
EE475 Lab #6 Fall 2005

Extended Multitasking

This week you will create another non-preemptive priority multitasking system. The
system will have only a few tasks to do, but it will illustrate several additional features of
a simple kernel system.

Preliminaries
1. Be sure to have a copy of Lab #5 and the various reference sheets on hand as a

resource for any questions on the port bit assignments, etc.

2. Make a temporary local folder for your work:
c:\EEClasses\EE475\tempxxx .

3. Launch Code Warrior and make a new project file for this week.

Exercise #1: Set Up Several Tasks
To get started with the simple kernel, download the C program framework file
(lab6.framework.txt) from the course website. You will need to edit the framework
file to add your own code.

The framework file defines an 8-bit variable called interrupt_pattern:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
unused unused unused unused (see Ex. #3) IRQ RTI 1 RTI 0

a) The provided function RTI_handler() sets bits 0 and 1 of
interrupt_pattern on a periodic basis.

b) You need to write a function IRQ_handler() that sets bit 2 of
interrupt_pattern whenever the IRQ button is pressed. Also, set IRQ to
be edge triggered. Run a wire from Push Button 5 to the IRQ pin on the
daughterboard header.

c) Write code for four tasks: func0(), func1(), func2(), and idle().
func0() must flip the state (0→1 or 1→0) of pin 1 of Port T .
func1() must flip the state of pin 2 of Port T .
func2() must flip the state of LED 1 on the CSM-12C32 daughterboard.
idle() must increment a global variable (idle_count) to track how many
times it runs. Remember to put the proper DDR settings for the ports so that you
can read the switch positions!

d) → Write a temporary main() function to test your four routines. For now, do
not use interrupts, just put all four routines in a loop with a delay so that the state
toggling happens about once per second. Observe the Port T pins using the
oscilloscope, and observe the LED directly.

EE475 Lab #6 2

Exercise #2: Run Functions Using a “Task List”
Edit your main() program to declare an array named func_table[] containing three
pointers to functions with no return value and no arguments. Set these three function
pointers to func0, func1, and func2. This is your rudimentary task list.

→ For testing purposes, alter your test loop from Exercise #1 above so that func0(),
func1(), and func2() are executed sequentially, as before without interrupts, but
now via the pointers stored in func_table[].

→ Demonstrate the proper operation of your functions and func_table access for
the instructor. Determine where idle_count is stored in memory and use the
debugger to display it.

Exercise #3: Task Control “Kernel” Setup
→ Run jumper wires from four of the DIP switches (SW1: 1,2,3,4) on the SLK board to
the header socket corresponding to PM0, PM1, PM2, and PM3, respectively.

The simple kernel concept used in this lab is to have the following properties:

• If Push Button 1 (internally wired) on the SLK board is pressed, stop execution and exit.
• Task 0 is the highest priority, Task 1 is the next lower priority, etc.
• Task 0 is “ready” if DIP switch 1 is ‘on’ AND bit 0 of interrupt_pattern is ‘1’
• Task 1 is “ready” if DIP switch 2 is ‘on’ AND bit 1 of interrupt_pattern is ‘1’
• Task 2 is “ready” if DIP switch 3 is ‘on’ AND bit 2 of interrupt_pattern is ‘1’
• If none of the three tasks is ready to run, then run the idle() function.

One way to implement these properties is given in the code fragment shown below.

while(PTP_PTP5 == 1) /* exit if Push Button 1 is pressed */
{

 i=0; /* start with task 0 */
 while(i<NUM_TASKS)
 {
 /* A task can run if its toggle switch is on AND the corresponding
 * bit is set in the interrupt_pattern variable.
 * Task priority order is 0, 1, 2, … then idle.

 * Stay in this while-loop until no task is currently ‘ready’.
 */

 if (test involving switches, task number i, and interrupt_pattern goes here)
 {
 /* YOUR CODE GOES HERE: execute function pointed

 * at by func_table[i], and then
 * clear the ith bit in interrupt_pattern
 */

/* Reset i to always check task 0 first (highest priority)
 * after any task is run.

 */
 i=0;
 }
 else i++; /* increment task number if current task not ready */
 }/* end while i */
 /* This point is reached when above NUM_TASKS tasks currently unable to run.

 */
 idle();

} /* end while PB1 */

EE475 Lab #6 3

→ Set up the Real Time Interrupt so that RTI_handler() is called every 1.024
milliseconds.

Using this code fragment as a model, write the required instructions so that the “kernel”
calls your assigned functions. Verify that the DIP switches control execution of the three
tasks. Check to see that your idle() function gets called and that the idle count global
variable is being incremented.

Exercise #4: Add another task
Finally, modify your program to include another task (task 3). Have task 3 toggle LED 2
on the CSM-12C32 daughterboard.

The new task (task 3) should be managed like the others: ready to run if toggle switch 4
is ‘on’ AND bit 3 of interrupt_pattern is set. However, instead of setting the
interrupt_pattern bit in the ISR, modify your func2() routine so that it sets bit 3 of
interrupt_pattern every other time that IRQ is pressed. In other words, your new
task 3 will be ready to run only if task 2 enables it.

→ Demonstrate the four task + idle system for the instructor.

Instructor Verification Sheet
Lab #6 Fall 2005

Student Name:

 Instructor Signature Date
Ex. #2 Tasks executing
using lookup pointer table

Ex. #4 Four tasks executing
with RTI/IRQ/switch
controls

Lab Report
The lab report is to be written up in the Memo format. Be sure to put the lab number in
the Memo header along with your name and date. For each exercise, answer the given
questions and demonstrate your understanding of the exercise. Include commented file
excerpts and this instructor verification sheet to get credit for the lab.

→ This lab report is due the beginning of the lab period in one week.

	Preliminaries
	Exercise #1: Set Up Several Tasks
	Exercise #2: Run Functions Using a “Task List”
	Exercise #3: Task Control “Kernel” Setup
	Exercise #4: Add another task
	Lab Report

