
EE475 Lab #7 Fall 2005

Investigating Task Priority

This week in Lab #7 you will use the prior framework of Lab #6 to evaluate the effects of
task priority in the simple non-preemptive multitask system.

Preliminaries
1. Start with the code you developed for Lab #6.

2. Make a temporary local folder for your work:
c:\EEClasses\EE475\tempxxx .

3. Launch Code Warrior and make a new project file for this week.

4. Replace the main.c file with your program from Lab #6. Run the code to make
sure it still functions as you expect.

Recall from last week that there is an 8-bit variable called interrupt_pattern:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
unused unused unused unused Enable F3 IRQ RTI 1 RTI 0

a) RTI_handler() sets bits 0 and 1 of interrupt_pattern on a periodic
basis.

b) IRQ_handler()sets bit 2 of interrupt_pattern whenever the IRQ
button is pressed.

c) func0()flips the state of pin 1 in PORTT.
func1()flips the state of pin 2 in PORTT.
func2()flips the state of LED 1 (CSM)
 and sets bit 3 of interrupt_pattern on every other call.
func3() flips the state of LED 2 (CSM).
idle()increments global variable idle_count to track how many times it
runs.

d) Finally, recall that the task loop in main() requires the DIP switches to be set
properly and that the lower task numbers be satisfied before allowing the higher
task numbers to run (simple priority scheme that always checks task 0 first).

Exercise #1: More complicated tasks
So far we have been using some very short and trivial tasks. In this exercise you will
simulate what happens when a more time-consuming task or set of tasks is to be used.

Modify the code for func0() so that in addition to modifying pin 1 of PORTT it also
reads each address from $00 through $FF into a static char array and calculates the
sum of the 256 characters.

EE475 Lab #7 2

Modify the code for func1() so that in addition to modifying pin 2 of PORTT it also
reads each address from $100 through $1FF into a static char array and calculates
the sum of the 256 characters.

Finally, modify the code for func3() so that in addition flipping LED 1 to it also reads
each address from $200 through $2FF into a static char array and calculates the
sum of the 256 characters.

This additional processor activity will increase the amount of time spent in func0(),
func1(), and func3(). If the total takes so long that the system completely
malfunctions, reduce the delay modifications to a smaller amount than 256.

→ Experiment with the following:

(a) Figure out a way to compare how quickly idle_count increases when
func0() is enabled and disabled. Does the debugger provide any means to do
this accurately?

(b) If all the functions are enabled, does the increased computation cause any
noticeable change in the system behavior (e.g., PORTT waveforms)?

(c) Is there any noticeable effect on the PORTT waveforms when the IRQ button is
pressed? Do the LEDs illuminate as expected?

Exercise #2: Priority changes
Edit your main() program to alter the task priorities: load func_table[] so that
func3 is in [0], func2 is in [1], func0 is in [2], and func1 is in [3]. This makes
func3 the highest priority and func1 the lowest priority. You will also need to switch
the bits in interrupt_pattern to match the new ordering! Find the places that
interrupt_pattern is set and tested and make sure the modifications do what you
need to do.

→ Experiment with the following:

(a) Compare how quickly idle_count increases when func0() is enabled and
disabled. How do the results compare to what you found in Exercise #1?

(b) Is there any noticeable effect on the PORTT waveforms when the IRQ button is
pressed?

(c) Predict what would happen if func3() was altered to take twice as much time to
execute. Then try it and see!

(d) Finally, exchange func1 and the altered func3 in the task table, making
func1 the highest priority. Observe the system behavior in this condition and
comment on the results.

→ Demonstrate and explain the altered priority exercise for the instructor.

Instructor Verification Sheet
Lab #7 Fall 2005

Student Name:

 Instructor Signature Date
Ex. #2 Task loading and
priority demonstration

Lab Report
The lab report is to be written up in the Memo format. Be sure to put the lab number in
the Memo header along with your name and date. For each exercise, answer the given
questions and demonstrate your understanding of the exercise. Include commented file
excerpts and this instructor verification sheet to get credit for the lab.

→ This lab report will be due at the start of lab on Tuesday, November 8, 2005
(instructor out of town next week).

	Preliminaries
	Exercise #1: More complicated tasks
	Exercise #2: Priority changes
	Lab Report

