
EE475 Lab #1 Fall 2003

Using the COSMIC C Integrated Development Environment.

The object of this lab is to learn how to set up a software project using the integrated
development environment, build the software, and run the executable on the HC12
evaluation board. In this lab you will also learn how to call D-Bug12 subroutines from
within your C program.

Logging On:
1. Wake up the computer (or turn on the power if it is off).
2. Begin by pressing Ctrl+Alt+Delete (Windows XP).
3. Enter your username and password, and select the proper domain.

Communicating with the EVB using HyperTerminal:
1. Get an HC12 EVB and power supply from the shelf. Attach the power cable and the

proper serial cable from the computer. Make sure the serial port switchbox is set
correctly.

2. Click on the HyperTerminal icon labeled HC12.ht on the desktop.
3. Move the cursor to the HyperTerminal window by clicking on the window with the

mouse.
4. Turn the EVB power supply on.
5. Press the RESET button on the EVB and you should see the D-Bug12 monitor

prompt.

Setting Up a Cosmic Software Project:
1. Make a directory under c:\EEClasses\EE475 called tempabc, where abc are

your initials.
2. Copy the Lab #1 files (dbug12.h, lab1.c, lab1.lkf, crts.s) from the

class web site to your tempabc directory.
3. Launch the Cosmic integrated development environment: Start -> Programs ->

Cosmic Tools -> IdeaCPU12.
4. Click on the Project Menu and Select New.
5. Click on the Setup Menu and select Working Directory. Using the path editor,

select the path to your tempabc directory and then click OK.
6. Right click on the Files icon in the left column. Select Add File. Go to the

tempabc directory and open lab1.c.
7. Again, right click on the Files icon in the left column. Select Add File. Go to the

tempabc directory and open Crts.s (you will have to change the files of type to
‘s’ files (*.s) to see this file).

8. Click on the plus sign next to the Files icon to see what files have been added. You
will notice the files are colored red. This means the files need to be compiled.

9. Double click on the Lab1.c file to bring it to the editor window.

EE475 Lab #1 1

http://www.coe.montana.edu/ee/rmaher/ee475/lab1/dbug12.h
http://www.coe.montana.edu/ee/rmaher/ee475/lab1/lab1.c
http://www.coe.montana.edu/ee/rmaher/ee475/lab1/lab1.lkf
http://www.coe.montana.edu/ee/rmaher/ee475/lab1/crts.s

Configuring the tools:
1. Click on the plus sign next to the Tools icon to expand the tools section.
2. Click on the plus sign next to the Compiler icon to expand the compiler section.
3. Right click on the compiler options icon. This brings up a window where you can

select any compiler options you want. Don’t change anything and just click OK
since we will use the default options.

4. Click on the plus sign next to the Linker icon to expand the linker section.
5. Right click on the linker options icon. This brings up a window, which you will have

to edit.
a. In the linker configuration window, check the box next to Output to File.

Then click the Find button to the right. Go to the tempabc directory and
then type Lab1.h12 in the file name text box. Click on the Save button.

b. In the linker configuration window, check the box next to Command File.
Then click the Find button to the right. Go to the tempabc directory and
click on Lab1.lkf which will put it in the file name text box. Click on the
Save button.

c. In the linker configuration window, check the box next to Create Map File.
Then click the Find button to the right. Go to the tempabc directory and
then type Lab1.map in the file name text box. Click on the Save button.

d. Finally, in the linker configuration window click the OK button. Notice that
Lab1.h12 is put next to the Project Target File Name icon in the top part of
the left column.

6. Right click on the linker command file to bring the command file to the editor. You

will eventually edit this type of file to place code exactly where you want it in
memory.

7. Click the plus sign next to the Builder icon to expand the builder section.
8. Right click on the builder options icon. This brings up a window, which you will

have to edit.
a. In the builder configuration window, check the box next to Run Object

Inspector. Then click the Options button to the right. Click on the gray line
that has: output symbol table. Click on the OK button.

b. In the builder configuration window, check the box next to Convert to
S-Records.

c. Finally, in the builder configuration window click the OK button.

9. Save the project (lab1.prj) to your tempabc directory after configuring it so you
won't have to reenter everything again!!

10. Now we are ready to build our project. To do this Click on the Builder icon (derrick

symbol) which is the fourth button from the right on the tool bar. You will notice that
two windows pop up. One window gives the symbol locations where the compiler
put these symbols in memory. The other window (lots of hex data) gives the S-
Record, which you will download to the HC12 evaluation board.

EE475 Lab #1 2

Downloading the S19 File to the EVB:
1. Copy the contents of the S-Record Window (highlight all the lines and select ‘copy’).
2. Move the cursor to the HyperTerminal communications window, type load, and press

enter.
3. Pull down the Edit menu and click on Paste to host. This will send what you copied

from the S-Record Window to the EVB. Wait until the prompt reappears.

Run the Program:
1. Run the program by typing g 4000 in the HyperTerminal window (g<space>4000).
2. To interact with the program, type a line next to the prompt and hit return. You

should see the line echoed back in all caps.

Note: To get the command prompt back, you will need to add the following line to the
end of the program (this is similar to the exit(0) function in C, which gets you back to the
D-bug12 prompt):

_asm("swi");

Otherwise you will have to press the reset button on the evaluation board to be able to
interact and load new/revised programs to the board.

Problems to do in lab: For the following lab problems you need to demonstrate a
working program to get credit for it. Have the instructor sign the verification sheet for
each working assignment that is completed. Each problem is worth 10 points.

Problem #1: Modify the Lab1.c program so that in addition to echoing the input
string it will also return each letter of the input on a separate line. You will want to look
in the EE475 Lab Manual, which contains the document "Using and Extending D-Bug12
Routines". This will list the functions that D-Bug12 supplies that you can use in your C
programs when running them on the HC12 evaluation board.

Note: Any D-Bug12 C function you call needs to be preceded by: DBug12FNP-> e.g.
type DBug12FNP->printf("..."); when you want to use the printf function.

For example, your program should take the input:

 Hello

And return: (don’t worry that they are all caps)

 H
 E
 L
 L
 O

EE475 Lab #1 3

Problem #2: Modify the Lab1.c program so that the input string is also echoed in
reversed order. That is, an entry of

Hello

results in an output of

OLLEH

Problem #3: Modify the Lab1.c program so that it will also return the location of the
“RAM vector interrupt table.” Have the program print the following statement:

The RAM vector interrupt table is located at address xxxx.

The value xxxx is what you need your program to determine. Make sure that you print
out the address in hexadecimal with 4 hexadecimal numbers.

Normally, the interrupt vector table is located at 0xffce. Since this location is in
EPROM, it can’t be modified when using D-Bug12. What D-Bug12 does when an
interrupt occurs is to check a specific location in RAM to see if there is an address other
than zero. If it is zero, it goes to the default interrupt routine specified by D-Bug12. If
there is some other address, it goes to that address. Thus we can modify where the
evaluation board goes for its interrupt service routines.

Hint: Use the SetUserVector() routine supplied by D-Bug12.

EE475 Lab #1 4

Factory-Configuration Memory Map

Address Range Description Location
$0000 - $01FF CPU Registers on-chip (MCU)
$0800 - $09FF
$0A00 - $0BFF

user code/data
reserved for D-Bug12

1K on-chip RAM (MCU)

$1000 - $1FFF user code/data 4K on-chip EEPROM (MCU)
$4000 - $7FFF user code/data 16K external RAM (U4, U6A)
$8000 - $9FFF
$A000 - $FD7F
$FD80 - $FDFF
$FE00 - $FE7F
$FE80 - $FEFF
$FF00 - $FF7F
$FF80 - $FFFF

available for user programs*
D-Bug12 program
D-Bug12 startup code*
user-accessible functions
D-Bug12 customization data*
available for user programs*
reserved for interrupt and
reset vectors

32K external EPROM (U7, U9A)

*Code in these areas may be modified. Requires reprogramming of the EPROMS.

Lab Report: Due at THE START OF THE LAB PERIOD NEXT WEEK.

The lab report is to be written up in the Memo format. Each student should submit a
separate lab report. For each problem, write a short description of what you did to solve
the problem. Include commented C code excerpts for each problem and attach this to the
memo.

Note: You will need to include the instructor verification sheet to get any credit for the
lab.

EE475 Lab #1 5

http://www.coe.montana.edu/ee/rmaher/ee475/lab memo report style.pdf

Instructor Verification Sheet
EE475 Lab #1

Fall 2003

Student Name:

 Instructor Signature Date
Assignment #1 runs
correctly

Assignment #2 runs
correctly

Assignment #3 returns
correct RAM vector address

Note: This verification sheet must be signed by the instructor and submitted with the lab
report to get any credit for the lab.

	Logging On:
	Communicating with the EVB using HyperTerminal:
	Setting Up a Cosmic Software Project:
	Configuring the tools:
	Downloading the S19 File to the EVB:
	Run the Program:

