
EE475 Lab #6 Fall 2003

Simple Multitasking

This week you will create a simple non-preemptive priority multitasking system. The
system will have only a few tasks to do, but it will illustrate several of the key features of
a simple kernel system.

Preliminaries
1. Be sure to have a copy of Lab #5 and the Cady M68HC12 book on hand as a

reference for any questions on the port bit assignments, etc. Plan to use your prior
code for DDR initialization, edge triggered IRQ, etc.

2. Make a temporary local folder for your work:
c:\EEClasses\EE475\tempxxx .

3. Launch the Cosmic CPU12 program and make a new lab6.prj project file for
this week based on the old lab5 project.

Exercise #1: Set Up Several Tasks
To get started with the simple kernel, download the C program framework file
(lab6.framework1.txt) from the course website. You will need to edit the framework
file to add your own code.

The framework file defines an 8-bit variable called interrupt_pattern:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Unused unused unused unused (see Ex. #3) IRQ RTI 1 RTI 0

a) The provided function RTI_handler() sets bits 0 and 1 of
interrupt_pattern. You will need to install a pointer to this function in the
RTI location of the vector table.

b) You need to write a function IRQ_handler() that sets bit 2 of
interrupt_pattern whenever the IRQ button is pressed. You will need to
install this function pointer in the vector table. Also, set IRQ to be edge triggered.

c) Write code for four tasks: func0(), func1(), func2(), and idle().
func0() must flip the state (0→1 or 1→0) of pin 0 in PORTT.
func1() must flip the state of pin 1 in PORTT.
func2() must flip the state of LED 0.
idle() must increment a global variable (idle_count) to track how many
times it runs.

d) Write a temporary main() function to test your four routines. For now, do not
use interrupts, just put all four routines in a loop with a delay so that the state
toggling happens about once per second. Observe the PORTT pins using the
oscilloscope, and observe the LED directly.

EE475 Lab #6 2

Exercise #2: Run Functions Using a “Task List”
Edit your main() program to declare an array named func_table[] containing three
pointers to functions with no return value and no arguments. Set the three function
pointers to func0, func1, and func2. This is your rudimentary task list.

Alter your test loop from Exercise #1 above so that func0(), func1(), and
func2() are executed as before, but now via the pointers stored in func_table[].

→ Demonstrate the proper operation of your functions and func_table access for
the instructor. Determine where idle_count is stored in memory and use the
monitor routines to display it.

Exercise #3: Task Control “Kernel” Setup
The simple kernel concept used in this lab has the following properties:

• If toggle switch 7 is ‘off’, stop execution and exit.
• Task 0 is the highest priority, Task 1 is the next lower priority, etc.
• Task 0 is “ready” if toggle switch 0 is ‘on’ AND bit 0 of interrupt_pattern is ‘1’
• Task 1 is “ready” if toggle switch 1 is ‘on’ AND bit 1 of interrupt_pattern is ‘1’
• Task 2 is “ready” if toggle switch 2 is ‘on’ AND bit 2 of interrupt_pattern is ‘1’
• If none of the three tasks is ready to run, then run the idle() function.

Assign your func0, func1, and func2 to be Task 0, Task 1, and Task 2, respectively.
One way to implement these properties is given next (from file lab6.framework2.txt).

#define NUM_TASKS 3

while(!(PORTAD&0x80)) /* exit if toggle switch 7 is ‘off’ */
{

 i=0; /* start with task 0 */
 while(i<NUM_TASKS)
 {
 /* A task can run if its toggle switch is on AND the corresponding
 * bit is set in the interrupt_pattern variable.
 * Task priority order is 0, 1, 2, … then idle.

 * Stay in this while-loop until no task is currently ‘ready’.
 */

 if ((~PORTAD) & (1<<i) & interrupt_pattern)
 {
 /* YOUR CODE GOES HERE: execute function pointed

 * at by func_table[i], and then
 * clear the ith bit in interrupt_pattern
 */

/* Reset i to always check task 0 first (highest priority)
 * after any task is run.

 */
 i=0;
 }
 else i++; /* increment task number if current task not ready */
 }/* end while i */
 /* This point is reached when above NUM_TASKS tasks currently unable to run.

 */
 idle();

} /* end while switch 7 */

Using this code segment as a model, write the required instructions so that the kernel
calls your assigned functions. Verify that the toggle switches control execution of the

EE475 Lab #6 3

three tasks. Check to see that your idle() function gets called and that the idle count
global variable is being incremented.

→ Demonstrate this kernel system for the instructor.

Exercise #4: OPTIONAL—add another task
If time permits, modify your program to include another task. The new task (task 3)
should be ready to run if toggle switch 3 is ‘on’ AND bit 3 of interrupt_pattern is
set. Modify your func2() routine so that it sets bit 3 of interrupt_pattern every
other time that IRQ is pressed. In other words, your new task 3 will be ready to run only
if task 2 enables it. Have task 3 toggle LED 1.

→ Demonstrate the four task + idle system for the instructor.

Instructor Verification Sheet
Lab #6 Fall 2003

Student Name:

 Instructor Signature Date
#1 Tasks executing using
lookup pointer table

#2 Tasks executing with
RTI/IRQ/switch controls

#3 Code modified for an
additional task

Lab Report
The lab report is to be written up in the Memo format. Be sure to put the lab number in
the Memo header along with your name and date. For each exercise, answer the given
questions and demonstrate your understanding of the exercise. Include commented file
excerpts and this instructor verification sheet to get credit for the lab.

→ This lab report is due the beginning of the lab period in one week.

	Preliminaries
	Exercise #1: Set Up Several Tasks
	Exercise #2: Run Functions Using a “Task List”
	Exercise #3: Task Control “Kernel” Setup
	Exercise #4: OPTIONAL—add another task
	Lab Report

