
A few notes on using pointers in the C language 
R.C. Maher EE475  Fall 2003 

 
A C language pointer is a variable that contains the address of a variable. 
 
The address of a variable is a non-negative integer number that uniquely identifies a 
specific location in the storage available to the program.  On small microprocessors the 
address is usually the actual physical address used by the hardware, while on larger 
systems it may be a virtual quantity.  In either case the C language pointer concept can be 
used to perform fast and efficient indexing, referencing, and manipulation of data 
structures. 

Declaring and Using Pointers 
The statement 
 
int integer_value = 13; 
 
tells the compiler to assign storage sufficient to hold one integer, and initializes the stored 
quantity to be the number 13.  The program can use the variable name 
integer_value in expressions and other references now that it has been declared and 
initialized. 
 
If we need to know where the contents of integer_value are actually stored, we can 
use the unary  &  operator to get its address.  Interpret the operator ‘&’ as “take address 
of”. 
 
For example, the statement 
 
printf("integer_value=%d (address of integer_value=%d)\n", 
      integer_value, (int) &integer_value); 
 
gives the output: 
 
integer_value=13 (address of integer_value=7143380) 
 
Note that a type cast (int) is used before the address value in order to print it out. 
 
The address ‘7143380’ is simply what happened to be returned when this program was 
run:  the specific value will vary from machine to machine and instance to instance.  We 
often do not really care about the numerical value of the address, BUT this may be 
important if we have specific hardware registers or ports to deal with. 
 

  1 



This is how we can visualize the data storage for this example: 
 
Address (arbitrary example) Contents 
…  
7143380 13 
…  
 
Here is how a pointer variable is declared: 
 
int *integer_pointer; 
 
This tells the compiler to assign storage sufficient to hold the address of an integer.  Note 
that this pointer variable has not been initialized, so the address it holds initially is 
garbage.  Then if we assign an address to be held by the pointer variable, like 
 
integer_pointer = &integer_value; 
 
the pointer variable integer_pointer now contains the address of the integer 
variable integer_value.  Continuing this example, the statement 
 
printf("address of integer_value=%d, address stored by 
integer_pointer=%d (address of integer_pointer=%d)\n", 
  (int) &integer_value, 
  (int) integer_pointer, 
  (int) &integer_pointer); 
 
gives the output 
 
address of integer_value=7143380, address stored by 
integer_pointer=7143380 (address of integer_pointer=7143316) 
 
Address (arbitrary examples) Contents 
…  
7143380  (integer_value) 13 
…  
7143316  (integer_pointer) 7143380 
…  
 
We use the unary operator * to cause indirect access to the quantity located at the address 
stored in the pointer variable.  Read ‘*’ as “get the value pointed at by”. 
 
For example,  
printf("integer_value=%d, value pointed at by integer_pointer=%d\n", 
      integer_value, *integer_pointer); 
 
gives the output 
integer_value=13, value pointed at by integer_pointer=13 

  2 



Pointers and Arrays 
An array in C defines a set of consecutive addresses.  The declared name of the array is 
actually a pointer to the first element of the array (lowest address).  This means that we 
can declare a pointer variable and assign it an address within the array, then access other 
array elements using pointer arithmetic. 
 
int integer_array[4]={500,501,502,503}; 
 
integer_pointer = integer_array; 
 
The statement 
 
printf("integer_pointer=%d, *integer_pointer=%d, integer_pointer+1 =%d, 
*(integer_pointer+1)=%d\n", 
  (int) integer_pointer, *integer_pointer, (int) (integer_pointer+1), 
*(integer_pointer+1));  
 
gives the output 
 
integer_pointer=7143320, *integer_pointer=500, integer_pointer+1 
=7143324, *(integer_pointer+1)=501 
 
Address (arbitrary examples) Contents 
…  
7143380  (integer_value) 13 
…  
7143332  (integer_array+3) 503 
7143328  (integer_array+2) 502 
7143324  (integer_array+1) 501 
7143320  (integer_array) 500 
7143316  (integer_pointer) 7143320 
…  
 
Note that for this example the size of an int variable is 4 bytes, so the compiler has 
caused the pointer arithmetic to increment properly (+4) according to this type. 

Pointers and Function Arguments 
One of the important uses of pointers in C is allow “call-by-reference” in addition to the 
usual “call-by-value” mechanism for function calls.  The default call-by-value process 
means that the value of a variable is passed to a function, and the function sets up its own 
local storage to hold that quantity while executing the function’s statements.  The only 
way a call-by-value function can change something outside its scope is by its return value 
or by using a global variable. 
 
If it is necessary or desirable to have a function alter the contents of a variable in the 
calling function, we can pass a pointer to that variable as the function argument.  The 

  3 



called function must define the argument as a pointer, but then it is able to alter the 
variable itself since the called function now knows its address. 
 
For example, let’s say we want a function that will increment each value in an array. 
 
void increment_array(int increment, int *arr, int arsize) 
{ 

int i; 
for(i=0;i<arsize;++i) *(arr++) += increment; 

} 
 
This function could be called by  increment_array(2,integer_array,4)  , 
which would cause each of the 4 elements in the integer_array to be incremented 
by 2 (502, 503, 504, 505).  Note that arr contains a copy of the pointer to the array, so 
this local pointer can be manipulated without changing the original integer_array 
pointer back in the calling program. 

Pointers to Functions 
Pointer variables can be declared for any storage type (char, int, float, arrays, structures, 
etc.), and they can also be declared for functions.  This ability to define function pointers 
is quite useful in embedded programming since we often want to set up vector tables 
(e.g., interrupt vectors) that turn control over to a subroutine using a jump table. 
 
For example, to declare a pointer variable test_func that points to a function that has 
one integer argument and returns an integer, use 
 
int (*test_func)(int); 
 
If the program includes a function  int do_task(int) , the address of that function 
is simply its name, do_task.  So, we can do the assignment 
 
test_func = do_task; 
 
and even call the function with an argument by using, for example,  
 
integer_value = (*test_func)( 29 ); 
 

  4 



An array of pointers to functions can also be declared.  The following is an example 
showing how this might be used. 
 
void do_task_0( ) 
{ 
 … 
} 
etc. for other functions 
 
void (*func_arr[3])(void); 
 
func_arr[0]=do_task_0; 
func_arr[1]=do_task_1; 
func_arr[2]=do_task_2; 
 
The memory arrangement for this example could be: 
 
Address (arbitrary examples) Contents 
…  
7143398  (func_arr[2]) 55396 
7143394  (func_arr[1]) 54560 
7143390  (func_arr[0]) 54390 
…  
55396 (start of do_task_2() ) <machine instructions…> 
…  
54560 (start of do_task_1() ) <machine instructions…> 
…  
54390 (start of do_task_0() ) <machine instructions…> 
…  
 

Storage Arrangements (Little Endian and Big Endian) 
In the examples above the size of an int is 4 bytes.  One question is whether the 4 bytes 
comprising the integer are stored with the least-significant byte at the lowest of the four 
addresses or the least-significant byte in the highest of the four addresses. 
 
To help understand this question we can use pointers and a pointer type cast. 
 
Consider the following statements: 
 
int integer_value = 272; 
char *character_pointer; 
 
character_pointer = (char *) &integer_value; 
 

  5 



The pointer character_pointer now contains the address of the variable 
integer_value, but what’s more, any pointer arithmetic with 
character_pointer will now be done with the size of a char instead of the size of 
an int. 
The statement 
 
printf("integer_value=%d, bytes[0-4](hex)= %02x %02x %02x %02x\n", 
integer_value, 
(int) *character_pointer, 
(int) *(character_pointer+1), 
(int) *(character_pointer+2), 
(int) *(character_pointer+3) ); 
 
produces the output 
 
integer_value=272, bytes[0-4](hex)= 10 01 00 00 
 
In this example we see that the individual bytes of the integer number 272 are stored 
‘little endian’, meaning the least significant byte containing hex 10 (= decimal 16) is 
stored at the lowest address, the next byte (hex 01 = 256) is stored higher, and so forth. 
 
Intel microprocessors use little endian storage, while most other processors (including 
Motorola) use big endian.  The result of the code segment above would be “00 00 01 10” 
on a big endian machine. 
 
We may do a homework problem involving converting data from big endian to little 
endian and vice versa. 
 

  6 


	A few notes on using pointers in the C language
	Declaring and Using Pointers
	Pointers and Arrays
	Pointers and Function Arguments
	Pointers to Functions
	Storage Arrangements (Little Endian and Big Endian)


