
EE475 Lab #2 Fall 2004

Creating C Programs With the CodeWarrior IDE

In this lab you will use the Metrowerks CodeWarrior compiler to create, build, and run
several simple C programs. CodeWarrior is a code development environment that
supports a wide variety of processor targets, including the HC08 and HC12. We will be
using it with the MC68HC912BC32 processors on the Axiom CME-12BC32 single-
board computers.

Logging On:
1. Wake up the computer (or turn on the power if it is off).
2. Begin by pressing Ctrl+Alt+Delete (Windows XP).
3. Enter your username and password, and select the proper domain.

Launching :
Start the development application:

> Programs | Metrowerks CodeWarrior | CW12 V3.1 | CodeWarrior IDE

Setting up the CodeWarrior software project:
1. From the CodeWarrior File menu, select the New… option. The New Project

window should appear.

2. Fill in a project name (e.g., Lab2xyz, where xyz are your initials), and use the
Set… button to locate a subdirectory you can read and write:
c:\eeclasses\ee475 is a good choice. Choose the HC(S)12 New Project
Wizard and press OK.

3. Using the Wizard prompts:
a. Select the MC68HC912BC32 derivative
b. Select C language support
c. No PC-lint support
d. No floating point support
e. Small memory model
f. Metrowerks Full Chip Simulator

And then press Finish.

The project framework has now been created.

In the left pane, open all the file browse folders by pressing the "+" boxes to see all
the supporting files.

EE475 Lab #2 2

Compiling a simple program:
Using the browse view, locate the main.c file in the Sources group. Double-click to
launch the file in an editor window. This dummy main() routine just enables interrupts
and then traps itself in an infinite loop. Keep in mind that embedded software generally
does not "return" to a calling routine, so an infinite loop somewhere in the code is not
unusual.

Now replace the main() routine with the following:
void main(void)
{
/* This is a test program.
 * The results are meaningless.
 */
 int j;
 volatile int val;

 val=10;

 for(j=0;j<6;++j){
 val=val+j;
 }
 _asm("swi");
}

Note that volatile int is used to prevent the compiler from eliminating the
"useless" code involving val. Also, note that the _asm() function can be used to insert
an in-line assembly language instruction. In this case we are inserting a software
interrupt (swi), and this will cause the program to turn control back to CodeWarrior.

Save the main.c file, then select Make from the Project menu (or press the "make" icon
on the task bar).

Any compiler errors will appear in a pop-up window.

Ask for help if any of the preliminary steps did not work properly.

→ Once the program compiles correctly, try making some deliberate errors (missing
semicolons, misspelled variable names, etc.) and see what the compiler errors look like.

Simulating/debugging the program:
Fix the program until it compiles correctly, then press the green Debug button to launch
the simulator/debugger application. The debugger app automatically opens a variety of
windows to show the source code, disassembly, register contents, etc.

→ In the debugger, press the green arrow (start/continue) to run the program using the
software simulator. The simulator will stop when it hits the "swi" (software interrupt)
instruction. Observe the updated views in each window.

EE475 Lab #2 3

→ Now go to the Source window in the debugger and scroll until you can see the
val=10; line. Set a breakpoint on this line by pointing with the mouse, doing a right-
click to bring up the context menu, and selecting "Set Breakpoint". A red arrow should
appear on that line in the Source window.

Select Restart in the Run menu, and observe that the simulator restarts the code and
stops at the breakpoint line. Now use the Single Step button to go through the program
one line at a time.

Things to keep in mind:

1. Each line of the C program usually executes several assembly language
instructions. Observe the assembly instructions in the Assembly window.

2. The variables are updated in the Data window after each step.

3. The compiler generates special startup and initialization code that is executed
before turning control over to your main() routine. To see this, select Load…
from the Simulator menu, find the file Simulator.abs in the bin folder,
load it, then start single stepping the program until you reach your main()
routine.

→ Demonstrate your use of the simulator/debugger for the instructor.

Problems to do in the lab:
For the following lab problems you need to demonstrate a working program to get credit
for it. Have the instructor sign the verification sheet for each working assignment that is
completed.

Problem #1: In addition to the software simulator, the CodeWarrior debugger app will
monitor the HC12 development boards in the lab. Setup the following:

1. Make sure the Axiom board is connected with a serial cable, and the cable switch
box is set properly to use that cable.

2. Make sure the Axiom board is powered up. Press Reset on the board.

3. In the debugger app, go to the Component menu and choose Set Target… In
the target selection window, select the HC12 processor and the D-Bug12
Target Interface and press OK. The software should locate the hardware
via the serial port and load the code into the hardware processor's memory. Make
sure the CPU derivative type is set to MC68HC912B32.

Try running the code, setting breakpoints, etc., using the serial connection.

Once you are familiar with how the hardware debugger behaves—essentially just like the
software simulator—go back and do the following:

EE475 Lab #2 4

1. Get a copy of the dbug12.h file from the EE475 course web site (Notes page)
and place it in the Sources folder of your project (e.g.,
\eeclasses\ee475\Lab2xxx\Sources). dbug12.h contains the
definitions and declarations needed for your C program to use the Dbug12 ROM
monitor functions.

2. In the CodeWarrior project window, right-click on the Sources group and select
Add Files… Browse to find the dbug12.h file, and add it to the project.

3. Edit main.c to add #include "dbug12.h" on the line below the other
#include files.

4. Now just above the _asm("swi"); line, insert the statement:

val = DBug12FNP->SetUserVector(RAMVectAddr,(Address) 0);

This complicated-looking statement uses the Dbug12 monitor routine to report
where the interrupt vector table is located in memory.

Compile the code, fix any errors, then re-launch the debugger and run your program.

→ Set the Data window in the debugger to display the variable val in hex format, and
show the instructor where the vector table can be found.

→ For your memo report, include an explanation of what the SetUserVector routine
does: refer to the Dbug12 application notes on the EE475 course web site. We will be
using this routine to install interrupt service routines in future labs.

Before moving on to Problem #2, keep a copy of the Problem #1 main.c file using the
following procedure:

In the CodeWarrior window, save the main.c file under the name (Save As…)
main1.c, then right-click on the file name in the project browser and remove it from the
Sources folder. Don't be alarmed by the warning message: the file itself will not be
deleted from the disk folder, only from the list of project files.

Next, add the main.c file back into the Sources group, open it in the editor, and delete
the statements within the main() routine. Save the file, then go ahead with the next
problem.

Problem #2: Create a C program that sequentially blinks each of the 8 LEDs on the I/O
board, one at a time, in a continuous loop (you might want to include a delay (do-nothing
software loop) to make each blink last longer).

To implement this program you will need to realize that:

(a) The MC68HC912BC32.h header file includes C definitions of the various
processor I/O ports (PORTA, PORTP, etc.) and the individual register bits.

EE475 Lab #2 5

(b) The bits in each register are numbered from zero (least significant bit) through
seven (most significant bit).

(c) Port P (PORTP, 0x0056) is connected to the LEDs through a 74LS373 tri-state
latch. Set the Port P data direction register (DDRP, 0x0057) so that all eight bits
are outputs. To enable the ‘373 latch, set bit 5 of the CAN port data direction
register (DDRCAN, 0x013F) to ‘1’, and set bit 5 of the CAN port (PORTCAN,
0x013E) to ‘1’.

(d) The Port P bits are connected to the cathodes of the diodes (active low).
Put statements in the main() routine in order to implement the flashing LEDs. A partial
skeleton is shown below:

void main(void)
{
/* Set the bits of Port P to be outputs using
 * the data direction register DDRP
 */
 DDRP = 0xFF;

/* Set bit 5 of the CAN port to be an output using DDRCAN */
 DDRCAN5 = 1;

/* Set bit 5 of the CAN port to be '1' to enable the '373 latch
*/
 PCAN5 = 1;

…etc…
}

It is advisable to start simple: just make a program that turns on a pattern of LEDs by
writing to Port P. Incrementally add complexity until you have the LEDs flashing one by
one continuously.

→ Demonstrate your flashing LED program for the instructor.

BE SURE TO KEEP COPIES OF YOUR CODE AND INPUT/OUTPUT
EXAMPLES. Even though you may work in pairs in the lab, each student needs
to write his or her own individual report.

Lab Report: Due at THE START OF THE LAB PERIOD NEXT WEEK.

The lab report is to be written up in the Memo format. Each student should submit a
separate lab report. For each problem, write a short description of what you did to solve
the problem. Include commented C code excerpts for each problem and include them
within the memo.

Instructor Verification Sheet

EE475 Lab #2

Fall 2004

Student Name:

 Instructor Signature Date

Editor, compiler, simulator
skills demonstration.

Problem #1 runs on the HC-
12 hardware.

Problem #2 flashes LEDs.

Note: This verification sheet must be signed by the instructor and submitted with the lab
report to get any credit for the lab.

http://www.coe.montana.edu/ee/rmaher/ee475/lab memo report style.pdf

	Logging On:
	Launching :
	Setting up the CodeWarrior software project:
	Compiling a simple program:
	Simulating/debugging the program:
	Problems to do in the lab:

