
A few notes on using pointers in the C language
R.C. Maher EE475 Fall 2004

A C language pointer is a variable that contains the address of a variable.

The address of a variable is a non-negative integer number that uniquely identifies a
specific location in the storage available to the program. On small microprocessors the
address is usually the actual physical address used by the hardware, while on larger
systems it may be a virtual quantity. In either case the C language pointer concept can be
used to perform fast and efficient indexing, referencing, and manipulation of data
structures.

Using "&" (the "address of" operator)
The statement

int integer_value = 13;

tells the compiler to assign storage sufficient to hold one integer, and initializes the stored
quantity to be the number 13. The program can use the variable name
integer_value in expressions and other references now that it has been declared and
initialized.

If we need to know where the contents of integer_value are actually stored, we can
use the unary & operator to get its address. It is very unfortunate that the authors of C
chose to use &, since this symbol is also used to indicate bit-wise logical AND
operations. In any case, in the pointer-related form we interpret the operator ‘&’ as “take
address of”.

For example, the statement

printf("integer_value=%d (address of integer_value=%d)\n",
 integer_value, (int) &integer_value);

when executed on a particular computer gives the output:

integer_value=13 (address of integer_value=7143380)

Note that a type cast (int) is used before the address value in order to print it out.

The address ‘7143380’ is simply what happened to be returned when this program was
run: the specific value will vary from machine to machine and instance to instance. We
often do not really care about the numerical value of the address, BUT this may be
important if we have specific hardware registers or ports to deal with.

 1

This is how we can visualize the data storage for this example:

Address (arbitrary example) Contents
…
7143380 integer_value 13
…

Declaring a Pointer Variable
For some reason, the creators of the C language chose to use the * symbol to indicate
multiplication and to indicate several pointer-related operations. For example, here is
how a pointer variable is declared:

int *integer_pointer;

This tells the compiler to assign storage sufficient to hold the address of an integer, and to
associate the storage location with the name integer_pointer. Note that this
pointer variable has not been initialized, so the address it holds initially is garbage. Then
if we assign an address to be held by the pointer variable, like

integer_pointer = &integer_value;

the pointer variable integer_pointer now contains the address of the integer
variable integer_value. Continuing this example, the statement

printf("address of integer_value=%d, address stored by
integer_pointer=%d (address of integer_pointer=%d)\n",
 (int) &integer_value,
 (int) integer_pointer,
 (int) &integer_pointer);

gives the output

address of integer_value=7143380, address stored by
integer_pointer=7143380 (address of integer_pointer=7143316)

Address (arbitrary examples) Contents
…
7143380 integer_value 13
…
7143316 integer_pointer 7143380
…

Using "*" (the "get value pointed at by" operator)
We use the unary operator * (yet again!) to cause indirect access to the quantity located
at the address stored in the pointer variable. Read ‘*’ as “get the value pointed at by”.

 2

For example,
printf("integer_value=%d, value pointed at by integer_pointer=%d\n",
 integer_value, *integer_pointer);

gives the output
integer_value=13, value pointed at by integer_pointer=13

Pointers and Arrays
An array in C defines a set of consecutive addresses. The declared name of the array is
actually a pointer to the first element of the array (lowest address). This means that we
can declare a pointer variable and assign it an address within the array, then access other
array elements using pointer arithmetic.

int integer_array[4]={500,501,502,503};

integer_pointer = integer_array;

The statement

printf("integer_pointer=%d, *integer_pointer=%d, integer_pointer+1 =%d,
*(integer_pointer+1)=%d\n",
 (int) integer_pointer, *integer_pointer, (int) (integer_pointer+1),
*(integer_pointer+1));

gives the output

integer_pointer=7143320, *integer_pointer=500, integer_pointer+1
=7143324, *(integer_pointer+1)=501

Address (arbitrary examples) Contents
…
7143380 integer_value 13
…
7143332 integer_array+3 503
7143328 integer_array+2 502
7143324 integer_array+1 501
7143320 integer_array 500
7143316 integer_pointer 7143320
…

Note that for this example the size of an int variable happens to be 4 bytes, so the
compiler has caused the pointer arithmetic to increment properly (+4) according to this
type.

 3

Pointers and Function Arguments
One of the important uses of pointers in C is allow “call-by-reference” in addition to the
usual “call-by-value” mechanism for function calls.

The default call-by-value process means that the value of a variable is passed to a
function, and the function sets up its own local storage to hold that quantity while
executing the function’s statements. The only way a call-by-value function can change
something outside its scope is by its return value or by using a global variable.

If it is necessary or desirable to have a called function alter the contents of a variable in
the calling function, the caller can pass a pointer to that variable as a function argument.
The prototype of the called function must also define the argument as a pointer, but then
it is able to alter the contents of the variable itself since the called function now knows
the variable's address.

For example, let’s say we want a function that will increment each value in an array.

void increment_array(int increment, int *arr, int arsize)
{

int i;
for(i=0;i<arsize;++i) *(arr++) += increment;

}

This function could be called by increment_array(2,integer_array,4) ,
which would cause each of the 4 elements in the integer_array to be incremented
by 2 (502, 503, 504, 505).

There is one other important detail in this example. Note that the function arguments are
kept as local copies within the context of the function. For example, the argument arr
contains a local copy of the pointer to the array, so this local pointer can be manipulated
(e.g., arr++) without changing the original integer_array pointer back in the
calling program.

Pointers to Functions
Pointer variables can be declared for any storage type (char, int, float, arrays, structures,
etc.), and they can also be declared for functions. This ability to define function pointers
is quite useful in embedded programming since we often want to set up vector tables
(e.g., interrupt vectors) that turn control over to a subroutine using a jump table.

For example, to declare a pointer variable test_func that points to a function that has
one integer argument and returns an integer, use

int (*test_func)(int);

 4

The declared name of a function is actually a pointer to the function. So, if the program
includes a function int do_task(int) , the address of that function is simply its
name, do_task. So, we can do the assignment

test_func = do_task;

and even call the function with an argument by using, for example,

integer_value = (*test_func)(29);

An array of pointers to functions can also be declared. The following is an example
showing how this might be used.

void do_task_0()
{
 …
}
etc., for other functions

/* declare an array of three pointers to void functions
with no arguments */
void (*func_arr[3])(void);

func_arr[0]=do_task_0;
func_arr[1]=do_task_1;
func_arr[2]=do_task_2;

The memory arrangement for this example could be:

Address (arbitrary examples) Contents
…
7143398 func_arr[2] 55396
7143394 func_arr[1] 54560
7143390 func_arr[0] 54390
…
55396 start of do_task_2() <machine instructions…>
…
54560 start of do_task_1() <machine instructions…>
…
54390 start of do_task_0() <machine instructions…>
…

 5

Storage Arrangements (Little Endian and Big Endian)
In the examples above the size of an int is 4 bytes. One question is whether the 4 bytes
comprising the integer are stored with the least-significant byte at the lowest of the four
addresses or the least-significant byte in the highest of the four addresses.

To help understand this question we can use pointers and a pointer type cast.

Consider the following statements:

int integer_value = 272;
char *character_pointer;

character_pointer = (char *) &integer_value;

The pointer character_pointer now contains the address of the variable
integer_value, but what’s more, any pointer arithmetic with
character_pointer will now be done with the size of a char instead of the size of
an int, due to the explicit type cast (char *).

The statement

printf("integer_value=%d, bytes[0-4](hex)= %02x %02x %02x %02x\n",
integer_value,
(int) *character_pointer,
(int) *(character_pointer+1),
(int) *(character_pointer+2),
(int) *(character_pointer+3));

produces the output

integer_value=272, bytes[0-4](hex)= 10 01 00 00

In this example we see that the individual bytes of the integer number 272 are stored
‘little endian’, meaning the least significant byte containing hex 10 (= decimal 16) is
stored at the lowest address, the next byte (hex 01 = 256) is stored higher, and so forth.

Intel microprocessors use little endian storage, while most other processors (including
Motorola) use big endian. The result of the code segment above would be “00 00 01 10”
on a big endian machine.

We will do a homework problem involving converting data from big endian to little
endian and vice versa.

 6

	A few notes on using pointers in the C language
	Using "&" (the "address of" operator)
	Declaring a Pointer Variable
	Using "*" (the "get value pointed at by" operator)
	Pointers and Arrays
	Pointers and Function Arguments
	Pointers to Functions
	Storage Arrangements (Little Endian and Big Endian)

