
2 TUTORIAL

This chapter contains the following topics.
• “Overview” on page 2-1

• “Exercise One: Building and Running a C Program” on page 2-3

• “Exercise Two: Calling an Assembly Routine and Creating an 
LDF” on page 2-16

• “Exercise Three: Plotting Data” on page 2-34

• “Exercise Four: Linear Profiling” on page 2-46

• “Exercise Five: Installing and Using a VCSE Component” on 
page 2-54

Overview
This tutorial demonstrates some of the key features and capabilities of the 
VisualDSP++ Integrated Development and Debugging Environment 
(IDDE). The exercises use sample programs written in C, C++, and 
assembly for ADSP-21xxx DSPs. For these exercises, you will use the 
ADSP-2106x simulator for the ADSP-21065L target.

You can use a different ADSP-21xxx processor with only minor changes to 
the Linker Description File (.LDF) included with each project.
VisualDSP++ 3.0 Getting Started Guide 2-1 
for SHARC DSPs



Overview
VisualDSP++ includes basic Linker Description Files for each processor 
type in the ldf folder. The default installation path for this folder is:

Analog Devices\VisualDSP\21k\ldf

The source files for these exercises are installed during the VisualDSP++ 
software installation.

The tutorial contains five exercises.

• In Exercise One, you will start up VisualDSP++, build a project 
containing C source code, set up a debug session, and run the 
program. 

• In Exercise Two, you will create a new project, use Expert Linker 
to create a Linker Description File for the project, modify sources 
to call an assembly routine, use Expert Linker to modify the .LDF 
file, and rebuild the project.

• In Exercise Three, you will apply a simple convolution algorithm 
to a buffer of data. You will use the VisualDSP++ plotting engine 
to view the different data arrays graphically.

• In Exercise Four, you will use linear profiling to examine the effi-
ciency of the convolution algorithm used in Exercise Three. Using 
the collected linear profile data, you will pinpoint the most 
time-consuming areas of the algorithm, which are likely to require 
hand tuning in the assembly language.

• In Exercise Five, you will install a VCSE component on your sys-
tem and add the component to the project. Then you will build 
and run the program with the component.
2-2 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
Tip: Become familiar with the VisualDSP++ toolbar buttons, shown in 
Figure 2-1. They are shortcuts for menu commands such as File, Open. 
Toolbar buttons and menu commands that are not available for the task 
that you are performing are disabled and displayed in gray.

Exercise One: Building and Running a C 
Program

In this exercise, you will: 

• Start up the VisualDSP++ environment 

• Open and build an existing project

• Set up the debug session and examine windows and dialog boxes

• Run the program

The sources for this exercise are in the dot_product_c folder. The default 
installation path is:

Program Files\Analog Devices\VisualDSP\21k\Examples\tutorial\

dot_product_c

Figure 2-1. VisualDSP++ Toolbar Buttons
VisualDSP++ 3.0 Getting Started Guide 2-3 
for SHARC DSPs



Exercise One: Building and Running a C Program
Step 1: Start VisualDSP++ and Open a Project
To start VisualDSP++ and open a project:

1. Click the Windows Start button and select Programs, VisualDSP, 
and VisualDSP++ Environment.

If you are running VisualDSP++ for the first time, the New Session 
dialog box (Figure 2-6 on page 2-11) opens to enable you to set up 
a session.

a. Select the values shown in Table 2-1.

b. Click OK. The VisualDSP++ main window appears.

If you have already run VisualDSP++ and the Reload last project 
at startup option is selected on the Project page under Settings and 
Preferences, VisualDSP++ opens the last project that you worked 
on. To close this project, choose Close from the Project menu, and 
then click No when prompted to save the project. Since you have 
made no changes to the project, you do not have to save it.

2. From the Project menu, choose Open.

VisualDSP++ displays the Open Project dialog box.

Table 2-1. Session Specification 

Box Value

Debug Target ADSP-2106x Family Simulator

Platform ADSP-2106x Simulator

Session Name ADSP-21065L ADSP-2106x Simulator

Processor ADSP-21065L
2-4 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
3. In the Look in box, open the Program Files\Analog Devices 
folder and double-click the following subfolders in succession.

VisualDSP\21k\Examples\tutorial\dot_product_c

This path is based on the default installation.

4. Double-click the dotprodc project (.dpj) file.

VisualDSP++ loads the project in the Project window, as shown in 
Figure 2-2. 

The environment displays messages in the Output window as it 
processes the project settings and file dependencies.

The dotprodc project comprises two C language source files, dot-
prod.c and dotprod_main.c, which define the arrays and calculate 
their dot products.

Figure 2-2. Project Loaded in the Project Window
VisualDSP++ 3.0 Getting Started Guide 2-5 
for SHARC DSPs



Exercise One: Building and Running a C Program
5. From the Settings menu, choose Preferences to open the Prefer-
ences dialog box, shown in Figure 2-3.

6. On the General page, under General Preferences, make sure that 
the following options are selected.

• Run to main after load

• Load executable after build

Figure 2-3. Preferences Dialog Box
2-6 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
7. Click OK to close the Preferences dialog box.

You are now ready to build the project.

Step 2: Build the dotprodc Project
To build the dotprodc project:

1. From the Project menu, choose Build Project.

VisualDSP++ first checks and updates the project dependencies 
and then builds the project by using the project source files.

As the build progresses, the Output window displays status mes-
sages (error and informational) from the tools. For example, when 
a tool detects invalid syntax or a missing reference, the tool reports 
the error in the Output window.

If you double-click the file name in the error message, Visu-
alDSP++ opens the source file in an editor window. You can then 
edit the source to correct the error, rebuild, and launch the debug 
session. If the project build is up-to-date (the files, dependencies, 
and options have not changed since the last project build), no build 
is performed unless you run the Rebuild All command. Instead, 
you see the message “Project is up to date.” If the build has no 
errors, a message reports “Build completed successfully.”
VisualDSP++ 3.0 Getting Started Guide 2-7 
for SHARC DSPs



Exercise One: Building and Running a C Program
In this example (Figure 2-4) notice that the compiler detects an 
undefined identifier and issues the following error message in the 
Output window.

2. Double-click the error message (black) text in the Output window.

VisualDSP++ opens the C source file dotprod_main.c in an editor 
window and places the cursor on the line that contains the error 
(see Figure 2-5 on page 2-9).

Figure 2-4. Example of Error Message
2-8 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
The editor window in Figure 2-5 shows that the integer variable 
declaration int has been misspelled as itn.

3. In the editor window, click on itn and change it to int. Notice 
that int is now color coded to signify that it is a valid C keyword.

4. Save the source file by choosing Save from the File menu.

5. Build the project again by choosing Build Project from the Project 
menu. The project is now built without any errors, as reported in 
the Build view in the Output window.

Now that you have built your project successfully, you can run the exam-
ple program.

Figure 2-5. Output Window and Editor Window
VisualDSP++ 3.0 Getting Started Guide 2-9 
for SHARC DSPs



Exercise One: Building and Running a C Program
Step 3: Set Up the Debug Session 
In this procedure, you will: 

• Set up the debug session before running the program 

• View debugger windows and dialog boxes

Since you enabled Load executable after build on the General page in the 
Preferences dialog box, the executable file dotprodc.dxe is automatically 
downloaded to the target. 

If the selected processor in the debug session does not match the project’s 
build target, VisualDSP++ reports this discrepancy and asks if you want to 
select another session before downloading the executable to the target. If 
VisualDSP++ does not open the Session List dialog box, skip steps 1–4.

To set up the debug session: 

1. In the Session List dialog box, click New Session to open the New 
Session dialog box, shown in Figure 2-6 on page 2-11.

For subsequent debugging sessions, use the New Session command 
on the Sessions menu to open the New Session dialog box.
2-10 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
2. Specify the target and processor information listed in Table 2-2.

3. Click OK to close the New Session dialog box and return to the 
Session List dialog box.

Figure 2-6. New Session Dialog Box

Table 2-2. Session Specification 

Box Value

Debug Target ADSP-2106x Family Simulator

Platform ADSP-2106x Simulator

Session Name ADSP-21065L ADSP-2106x Simulator

Processor ADSP-21065L
VisualDSP++ 3.0 Getting Started Guide 2-11 
for SHARC DSPs



Exercise One: Building and Running a C Program
4. With the new session name highlighted, click Activate.

If you do not click Activate, the session mismatch message appears 
again.

VisualDSP++ closes the Session List dialog box, automatically 
loads your project’s executable file (dotprodc.dxe), and advances to 
the main function of your code (see Figure 2-7).

Figure 2-7. Loading dotprodc.dxe
2-12 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
5. Look at the information in the open windows.

The Output window’s Console view contains messages about the 
status of the debug session. In this case, VisualDSP++ reports that 
the dotprodc.dxe load is complete.

The Disassembly window displays the machine code for the exe-
cutable. Use the scroll bars to move around the Disassembly 
window.

Note that a solid red circle  and a yellow arrow  appear at the 
start of the program labeled “main”.

The solid red circle indicates that a breakpoint is set on that 
instruction, and the yellow arrow indicates that the processor is 
currently halted at that instruction. When VisualDSP++ loads your 
C program, it automatically sets two breakpoints, one at the begin-
ning and one at the end of code execution.
VisualDSP++ 3.0 Getting Started Guide 2-13 
for SHARC DSPs



Exercise One: Building and Running a C Program
6. From the Settings menu, choose Breakpoints to view the break-
points set in your program. VisualDSP++ displays the Breakpoints 
dialog box, shown in Figure 2-8.

The breakpoints are set at these C program labels:

• “dotprod_main.c” 118

• __lib_prog_term

The Breakpoints dialog box enables you to view, add, and delete 
breakpoints and to browse for symbols. In the Disassembly and 
editor windows, double-clicking on a line of code toggles (adds or 
deletes) breakpoints. In the editor window, however, you must 
place the cursor in the gutter before double-clicking.

Figure 2-8. Breakpoints Dialog Box
2-14 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
Use these tool buttons to set or clear breakpoints:

 Toggles a breakpoint for the current line

 Clears all breakpoints 

7. Click OK or Cancel to exit the Breakpoints dialog box.

Step 4: Run dotprodc
To run dotprodc, click the Run button  or choose Run from the 
Debug menu.

VisualDSP++ computes the dot products and displays the following 
results in the Console view (Figure 2-9) in the Output window.

Dot product [0] = 0.000000

Dot product [1] = 0.707107

Dot product [2] = -0.500000

You are now ready to begin Exercise Two.

Figure 2-9. Results of the dotprodc Program
VisualDSP++ 3.0 Getting Started Guide 2-15 
for SHARC DSPs



Exercise Two: Calling an Assembly Routine and Creating an 
LDF
Exercise Two: Calling an Assembly 
Routine and Creating an LDF

In Exercise One, you built and ran a C program. In this exercise, you will 
modify this program to call an assembly language routine, create a Linker 
Description File to link with the assembly routine, and rebuild the 
project. The project files are largely identical to those of Exercise One. 
Minor modifications illustrate the changes needed to call an assembly lan-
guage routine from C source code.

Step 1: Create a New Project
To create a new project:

1. From the Project menu, choose Close to close the dotprodc 
project. Click Yes when prompted to close all open editor win-
dows. If you have modified your project during this session, you 
are prompted to save the project. Click No.

2. From the Project menu, choose New to open the Save New 
Project As dialog box, shown in Figure 2-10.

Figure 2-10. Save New Project As Dialog Box
2-16 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
3. Click the up-one-level button  until you locate the 
dot_product_asm folder, and then double-click this folder. 

4. In the File name box, type dot_product_asm, and click Save.

The Project Options dialog box (Figure 2-11) appears.

This dialog box enables you to specify project build information.

Figure 2-11. Project Options Dialog Box: Project Page
VisualDSP++ 3.0 Getting Started Guide 2-17 
for SHARC DSPs



Exercise Two: Calling an Assembly Routine and Creating an 
LDF
5. Take a moment to examine the tabbed pages in the Project 
Options window: Project, General, VIDL, Compile, Assemble, 
Link, Split, Load, and Post Build. On each page, you specify the 
tool options used to build the project.

6. On the Project page (Figure 2-11 on page 2-17), specify the fol-
lowing values.

These settings specify information for building an executable file 
for the ADSP-21065L DSP. The executable contains debug infor-
mation, so you can examine program execution.

7. Click the Compile tab to display the Compile page, shown in 
Figure 2-12 on page 2-19.

Table 2-3. Completing the Project Page

Box Value

Processor ADSP-21065L

Type DSP executable file

Name dot_product_asm

Settings for configuration Debug
2-18 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
8. In the General group box, select the Generate debug information 
check box, if it is not already selected, to enable debug information 
for the C source.

9. Click OK to apply changes to the project options and to close the 
Project Options dialog box.

When prompted to add support for the VisualDSP++ kernel, click 
No. Once added, kernel support cannot be removed.

You are now ready to add the source files to the project.

Figure 2-12. Project Options Dialog Box: Compile Page
VisualDSP++ 3.0 Getting Started Guide 2-19 
for SHARC DSPs



Exercise Two: Calling an Assembly Routine and Creating an 
LDF
Step 2: Add Source Files to dot_product_asm
To add the source files to the new project:

1. Click the Add File button , or from the Project menu, choose 
Add to Project and then choose File(s).

The Add Files dialog box (Figure 2-13) appears.

2. In the Look in box, locate the project folder, dot_product_asm.

3. In the Files of type box, select All Source Files.

4. Hold down the Ctrl key and click dotprod.c and dotprod_main.c. 
Then click Add.

To display the files that you added in step 4, open the Source 
Files folder in the Project window.

You are now ready to create a Linker Description File for the project.

Figure 2-13. Add Files Dialog Box: Adding Source Files to the Project
2-20 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
Step 3: Create a Linker Description File for the 
Project 

In this procedure, you will use the Expert Linker to create a Linker 
Description File for the project.

To create a Linker Description File:

1. From the Tools menu, choose Expert Linker and then choose Cre-
ate LDF to open the Create LDF Wizard, shown in Figure 2-14.

Figure 2-14. Create LDF Wizard
VisualDSP++ 3.0 Getting Started Guide 2-21 
for SHARC DSPs



Exercise Two: Calling an Assembly Routine and Creating an 
LDF
2. Click Next to display the Create LDF – Step 1 of 3 page, shown in 
Figure 2-15.

This page enables you to assign the LDF file name (based on the 
project name) and to select the Project type.

3. Accept the values selected for your project and click Next to dis-
play the Create LDF – Step 2 of 3 page, shown in Figure 2-16 on 
page 2-23.

Figure 2-15. Create LDF – Step 1 of 3 Page
2-22 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
This page enables you to set the System type (defaulted to Single 
processor), the Processor type (defaulted to ADSP-21065L to 
match the project), and the name of the linker Output file 
(defaulted to the name selected by the project).

4. Accept the default values and click Next to display the next page 
(Create LDF – Step 3 of 3), shown in Figure 2-17 on page 2-24.

Figure 2-16. Create LDF – Step 2 of 3 Page
VisualDSP++ 3.0 Getting Started Guide 2-23 
for SHARC DSPs



Exercise Two: Calling an Assembly Routine and Creating an 
LDF
5. Review the Summary of choices and click Finish to create the .LDF 
file.

You now have a new .LDF file in your project. The new file is in the 
Linker Files folder in the Project window.

The Expert Linker window opens with a representation of the .LDF 
file that you created. This file is complete for this project. Close the 
Expert Linker window.

6. Click the Build Project button  to build the project. The C 
source file opens in an editor window, and execution halts.

Figure 2-17. Create LDF – Step 3 of 3 Page
2-24 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
The C version of the project is now complete. You are now ready to mod-
ify the sources to call the assembly function.

Step 4: Modify the Project Source Files 
In this procedure, you will:

• Modify dotprod_main.c to call a_dot_c_asm instead of a_dot_c

• Save the modified file

To modify dotprod_main.c to call the assembly function:

1. Resize or maximize the editor window for better viewing.

2. From the Edit menu, choose Find to open the Find dialog box, 
shown in Figure 2-18.

Figure 2-18. Find Dialog Box: Locating Occurrences of /*
VisualDSP++ 3.0 Getting Started Guide 2-25 
for SHARC DSPs



Exercise Two: Calling an Assembly Routine and Creating an 
LDF
3. In the Find What box, type /*, and then click Mark All.

The editor bookmarks all lines containing /* and positions the cur-
sor at the first instance of /* in the extern double a_dot_c_asm 
declaration. 

4. Select the comment characters /* and use the Ctrl+X key combina-
tion to cut the comment characters from the beginning of the 
a_dot_c_asm declaration. Then move the cursor up one line and 
use the Ctrl+V key combination to paste the comment characters 
at the beginning of the a_dot_c declaration. Because syntax color-
ing is turned on, the code will change color as you cut and paste 
the comment characters.

Repeat this step for the end-of-comment characters */ at the end of 
the a_dot_c_asm declaration. The a_dot_c declaration is now fully 
commented out, and the a_dot_c_asm declaration is no longer 
commented.

5. Press F3 to move to the next bookmark.

The editor positions the cursor on the /* in the function call to 
a_dot_c_asm, which is currently commented out. Note that the 
previous line is the function call to the a_dot_c routine.

6. Press Ctrl+X to cut the comment characters from the beginning of 
the function call to a_dot_c_asm. Then move the cursor up one 
line and press Ctrl+V to paste the comment characters at the begin-
ning of the call to a_dot_c.

Repeat this step for the end-of-comment characters */. The main() 
function should now be calling the a_dot_c_asm routine instead of 
the a_dot_c function, previously called in Exercise One.

Figure 2-19 on page 2-27 shows the changes made in step 6.
2-26 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
7. From the File menu, choose Save to save the changes to the file.

8. Place the cursor in the editor window. Then, from the File menu, 
choose Close to close the dotprod_main.c file.

You are now ready to modify dotprodasm.ldf.

Figure 2-19. Editor Window: Modifying dotprod_main.c to Call 
a_dot_c_asm
VisualDSP++ 3.0 Getting Started Guide 2-27 
for SHARC DSPs



Exercise Two: Calling an Assembly Routine and Creating an 
LDF
Step 5: Use the Expert Linker to modify 
dot_prod_asm.ldf 

In this procedure you will: 

• View the Expert Linker representation of the .LDF file that you 
created

• Modify the .LDF file to map in the section for the a_dot_c_asm 
assembly routine

To examine and then modify dot_prod_asm.ldf to link with the assembly 
function:

1. Click the Add File button .

2. Select dotprod_func.asm and click Add.

3. Try to build the project by performing one of these actions:

• Click the Build Project button  .

• From the Project menu, choose Build Project.
2-28 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
Notice the linker error in the Output window, shown in 
Figure 2-20.

Figure 2-20. Output Window: Linker Error
VisualDSP++ 3.0 Getting Started Guide 2-29 
for SHARC DSPs



Exercise Two: Calling an Assembly Routine and Creating an 
LDF
4. In the Project window, open the Linker Files folder and dou-
ble-click the dot_prod_asm.ldf file. The Expert Linker window 
(Figure 2-21) opens with a representation of your file.

You might have to resize the Expert Linker window and scroll to 
see both panes (Input Sections and Memory Map).

The left pane contains a list of the Input Sections that are in your 
project or are mapped in the .LDF file. A red X is over the icon in 
front of the section named "my_asm_section" because the Expert 
Linker has determined that the section is not mapped by the .LDF 
file.

Figure 2-21. Expert Linker Window
2-30 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
The right pane contains a graphical representation of the memory 
segments that the Expert Linker defined when it created the .LDF 
file. Change the view mode by right-clicking in the right pane and 
choosing View Mode. Then choose Memory Map Tree to display 
the tree view shown in Figure 2-21 on page 2-30.

5. Map the section my_asm_section into the memory segment named 
seg_pmco as follows.

Open the my_asm_section input section by clicking on the plus 
sign in front of it. The input section expands to show that the 
linker macro $OBJECTS and the object file dotprod_func.doj both 
have a section that has not been mapped. Drag the icon in front of 
$OBJECTS to the memory map pane and onto seg_pmco. As shown 
in Figure 2-22 on page 2-32, the red X should no longer appear 
because the section my_asm_section has been mapped.
VisualDSP++ 3.0 Getting Started Guide 2-31 
for SHARC DSPs



Exercise Two: Calling an Assembly Routine and Creating an 
LDF
From the Tools menu, choose Expert Linker and Save to save the 
modified file. Then close the Expert Linker window.

If you forget to save the file and then rebuild the project, Visu-
alDSP++ will see that you modified the file and will automatically 
save it. 

You are now ready to rebuild and run the modified project. 

Figure 2-22. Dragging $OBJECTS onto seg_pmco
2-32 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
Step 6: Rebuild and Run dot_product_asm
To run dot_product_asm:

1. Build the project by clicking the Build Project button  or by 
choosing Build Project from the Project menu.

At the end of the build, the Output window displays “Build com-
pleted successfully” in the Build view. VisualDSP++ loads the 
program, runs to main, and displays the Output, Disassembly, and 
editor windows (shown in Figure 2-23).

Figure 2-23. dot_product_asm Successfully Built and Loaded
VisualDSP++ 3.0 Getting Started Guide 2-33 
for SHARC DSPs



Exercise Three: Plotting Data
2. Click the Run button to run dot_product_asm.

The program calculates the three dot products and displays the 
results in the Console view in the Output window. When the pro-
gram stops running, the message “Halted” appears in the status bar 
at the bottom of the window. The results, shown below, are identi-
cal to the results obtained in Exercise One.

Dot product [0] = 0.000000

Dot product [1] = 0.707107

Dot product [2] = -0.500000

You are now ready to begin Exercise Three.

Exercise Three: Plotting Data
In this exercise, you will load and debug a pre-built program that applies a 
simple convolution algorithm to a buffer of data. You will use the 
VisualDSP++ plotting engine to view the different data arrays graphically, 
both before and after running the program.

Step 1: Load the Convolution Program
To load the Convolution program:

1. Close the dot_product_asm project, but keep the Disassembly win-
dow and Output window (in the Console view) open.

2. From the File menu, choose Load Program or click  . The 
Open a Processor Program dialog box appears.

3. Select the convolution.dxe program to load as follows.

a. Open your Analog Devices folder and double-click the 
VisualDSP\21k\Examples\tutorial\convolution\Debug 
subfolder.
2-34 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
b. Double-click convolution.dxe to load the program. in an 
editor window.

c. If you are prompted to look for convolution.cpp, click Yes 
to open the Find dialog box and proceed to step d. If Visu-
alDSP++ opens an editor window, proceed to step 4 on 
page 2-36.

d. Click the up-one-level button  to access the convolu-
tion folder.

e. Double-click convolution.cpp to display the file in an edi-
tor window, as shown in Figure 2-24.

Figure 2-24.  Loading the Convolution Program
VisualDSP++ 3.0 Getting Started Guide 2-35 
for SHARC DSPs



Exercise Three: Plotting Data
4. Look at the source code of the Convolution program.

You can see four global data arrays:

Table

Input

Output

Impulse

You can also see four functions that operate on these arrays:

InitializeSineTable()

GenerateInputPulse()

GenerateImpulseCoeffs()

CalculateOutputPulse()

You are now ready to open a plot window.

Step 2: Open a Plot Window
To open a plot window:

1. From the View menu, choose Debug Windows and Plot. Then 
choose New to open the Plot Configuration dialog box, shown in 
Figure 2-25 on page 2-37.
2-36 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
Here you will add the data sets that you want to view in a plot 
window.

2. In the Plot group box, specify the following values.

• In the Type box, select Line Plot from the drop-down 
menu.

• In the Title box, type convolution.

Figure 2-25. Plot Configuration Dialog Box
VisualDSP++ 3.0 Getting Started Guide 2-37 
for SHARC DSPs



Exercise Three: Plotting Data
3. Enter three data sets to plot by using the values in Table 2-4.

After entering each data set, click Add to add the data set to the 
Data Sets list. The Plot Configuration dialog box should now look 
like the one in Figure 2-26 on page 2-39.

Table 2-4. Three Data Sets: Table, Input, and Output

Data Setting 
Field

Table
Data Set

Input
Data Set

Output
Data Set

Description

Name Table Input Output Data set

Memory Data(DM) 
Memory

Data(DM) 
Memory

Data(DM) 
Memory

Data memory

Address Table Input Output The address of this data 
set is that of the Input or 
Output array.

Click Browse to select the 
value from the list of 
loaded symbols.

Count 360 360 396 The arrays are 360 and 
396 elements long.

Stride 1 1 1 The data is contiguous in 
memory.

Data float float float Input and Output are 
arrays of float values.

Offset 0 0 0 Use zero, the default 
value.
2-38 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
Figure 2-26. Plot Configuration Dialog Box with Table/Input/Output 
Data Sets
VisualDSP++ 3.0 Getting Started Guide 2-39 
for SHARC DSPs



Exercise Three: Plotting Data
4. Click OK to apply the changes and to open a plot window with 
these data sets.

The plot window now displays the three arrays. Since, by default, 
the simulator initializes memory to zero, the data sets appear as one 
horizontal line, shown in Figure 2-27.

To display the legend box in the plot window, right-click in the 
plot window and choose Modify Settings. Then, on the General 
page, select Legend in the Options group box.

The legend box is not shown in the plot windows shown in this 
tutorial.

Figure 2-27. Plot Window: Before Running the Convolution Program
2-40 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
Step 3: Run the Convolution Program and View the 
Data

To run the Convolution program and view the data:

1. Press F10 or click the Step Over button  to step over the first 
line in main that calls the InitializeSine Table() function.

Stepping over each function enables you to see the data being cal-
culated in a plot window.

2. Step over the call to GenerateInputPulse() by using the Step Over 
command as you did in the previous step. The plot window now 
displays the data for both the Input array and the Table array.

Once you finish stepping over the function, the word “Halted” 
appears in the status bar at the bottom of the screen. The plot win-
dow should now show the sine wave data in the Table array.

3. Press F5 or click the Run button  to run to the end of the 
program.
VisualDSP++ 3.0 Getting Started Guide 2-41 
for SHARC DSPs



Exercise Three: Plotting Data
When the program halts, you see the results of the convolution 
algorithm in the Output array. All three data sets are now visible in 
the plot window, as shown in Figure 2-28.

Next you will zoom in on a particular region of interest in the plot 
window to focus in on the data.

Figure 2-28. Plot Window After Running the Convolution Program to 
Completion
2-42 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
4. Click the left mouse button inside the plot window and drag the 
mouse to create a rectangle to zoom into. Then release the mouse 
button to magnify the selected region.

Figure 2-29 shows the selected region.

Figure 2-30 on page 2-44 shows the magnified results.

Figure 2-29. Plot Window: Selecting a Region to Magnify
VisualDSP++ 3.0 Getting Started Guide 2-43 
for SHARC DSPs



Exercise Three: Plotting Data
To return to the view before magnification, right-click in the plot 
window and choose Reset Zoom from the menu. You can view 
individual data points in the plot window by enabling the data cur-
sor, as explained in the next step.

5. Right-click inside the plot window and choose Data Cursor from 
the popup menu. Then move through the individual data points in 
the current data set by pressing and holding the Left (←) and Right 
(→) arrow keys on the keyboard. The value of the current data 
point appears in the lower-left corner of the plot window, as shown 
in Figure 2-31 on page 2-45.

Figure 2-30. Plot Window: Magnified Result
2-44 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
To switch data sets, press the Up (↑ ) and Down (↓ ) arrow key.

To disable the data cursor, right-click in the plot window and 
choose (de-select) Data Cursor.

To return to the previous view (before magnification), right-click 
in the plot window and choose Reset Zoom from the popup menu.

You are now ready to begin Exercise Four.

Figure 2-31. Plot Window: Using the Data Cursor Feature
VisualDSP++ 3.0 Getting Started Guide 2-45 
for SHARC DSPs



Exercise Four: Linear Profiling
Exercise Four: Linear Profiling
In this exercise, you will load and debug the Convolution program from 
the previous exercise. You will use linear profiling, however, to evaluate 
the program’s efficiency and to determine where the application is 
spending the majority of its execution time in the code.

VisualDSP++ supports two types of profiling: linear and statistical.

• You use linear profiling with a simulator. The count in the Linear 
Profiling Results window is incremented every time a line of code 
is executed.

• You use statistical profiling with a JTAG emulator connected to a 
DSP target. The count in the Statistical Profiling Results window 
is based on random sampling. 

Step 1: Load the Convolution Program
To load the Convolution program:

1. Close all open windows except for the Disassembly window and 
the Output window.

2. From the File menu, choose Load Program, or click  . The 
Open a Processor Program dialog box appears.

3. Select the program to load as follows.

a. Open the Analog Devices folder and double-click the
VisualDSP\21k\Examples\tutorial\convolution\Debug 
subfolder.

b. Double-click convolution.dxe to load and run the Convo-
lution program.
2-46 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
c. If you are prompted to look for convolution.cpp, click Yes 
to open the Find dialog box and proceed to step d. If Visu-
alDSP++ opens an editor window, proceed to “Step 2: Open 
the Profiling Window.”

d. Click the up-one-level button  to access the convolu-
tion folder.

e. Double-click convolution.cpp to display the file in an edi-
tor window.

You are now ready to set up linear profiling.

Step 2: Open the Profiling Window
To open the Linear Profiling Results window:

1. From the Tools menu, choose Linear Profiling and then choose 
New Profile.

The Linear Profiling Results window opens.

Figure 2-32. Setting Up Linear Profiling for the Convolution Program
VisualDSP++ 3.0 Getting Started Guide 2-47 
for SHARC DSPs



Exercise Four: Linear Profiling
2. For a better view of the data, use the window’s title bar to drag and 
dock the window to the top of the VisualDSP++ main window, as 
shown in Figure 2-33.

The Linear Profiling Results window is initially empty. Linear 
profiling will be performed when you run the convolution pro-
gram. After you run the program and collect data, this window 
displays the results of the profiling session.

Since we are interested only in high level source code at this point, we 
will filter out any samples that do not map directly to our source code. 

Figure 2-33. Linear Profiling Results Window (Empty)
2-48 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
3. Right-click in the Linear Profiling Results window and choose 
Properties to display the Profile Window Properties dialog box, 
shown in Figure 2-34.

4. Select the Filter tab (shown in Figure 2-34) and then click in the Fil-
ter PC samples with no debug info check box to enable the filter. 
Click OK to close the dialog box.

You are now ready to collect and examine linear profile data.

Figure 2-34. Filtering Samples with No Debug Information
VisualDSP++ 3.0 Getting Started Guide 2-49 
for SHARC DSPs



Exercise Four: Linear Profiling
Step 3: Collect and Examine the Linear Profile Data
To collect and examine the linear profile data:

1. Press F5 or click  to run to the end of the program.

When the program halts, the results of the linear profile appear in 
the Linear Profiling Results window.

2. Examine the results of your linear profiling session.

The Linear Profiling Results window is divided into two, 
three-column panes. The left pane displays the results of the profile 
data, as shown in Figure 2-35.

Figure 2-35. Linear Profiling Results of Analyzing the Performance of the 
Convolution Program – Left Pane
2-50 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
Double-clicking on a line in the left pane displays the correspond-
ing source code for the profile data in the right pane, as shown in 
Figure 2-36.

If you are prompted to look for convolution.cpp, complete these 
steps:

a. Click Yes to open the Find dialog box.

b. Click the up-one-level button  to access the convolu-
tion folder.

c. Double-click convolution.cpp to display the file in an edi-
tor window.

The field values in the left pane are defined on the next page.

Figure 2-36. Linear Profiling Results of Analyzing the Performance of the 
Convolution Program – Right Pane
VisualDSP++ 3.0 Getting Started Guide 2-51 
for SHARC DSPs



Exercise Four: Linear Profiling
Histogram A graphical representation of the percentage of time 
spent in a particular execution unit. This percentage 
is based on the total time that the program spent 
running, so longer bars denote more time spent in a 
particular execution unit. The Linear Profiling 
Results window always sorts the data with the most 
time-consuming (expensive) execution units at the 
top.

% The numerical percent of the same data found in 
the Histogram column. You can view this value as 
an absolute number of samples by right-clicking in 
the Linear Profiling Results window and by select-
ing View Sample Count from the popup menu.

Execution Unit The program location to which the samples belong. 
If the instructions are inside a C function or a C++ 
method, the execution unit is the name of the func-
tion or method. For instructions that have no 
corresponding symbolic names, such as hand-coded 
assembly or source files compiled without debug-
ging information, this value is an address in the 
form of PC[xxx], where xxx is the address of the 
instruction.

If the instructions are part of an assembly file, the execution unit is the 
assembly file followed by the line number in parentheses.

In Figure 2-35 on page 2-50 the left pane shows that the function Calcu-
lateOutputPulse() has consumed over 38% of the total execution time. 
Double-clicking one of these lines displays the source file, convolu-
tion.cpp, in the right (source) pane. The source pane displays data for 
each line of executable code in the file for which linear profile data has 
been collected.
2-52 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
Double-clicking the line with the CalculateOutputPulse() function in 
the left pane displays the linear profile data shown in Figure 2-37 in the 
right pane.

The details of the CalculateOutputPulse() function show that 26.02% of 
the time spent running the entire Convolution program is spent inside the 
nested for loop, calculating the convolution.

The data suggests that you should rewrite this function in hand-tuned 
assembly language to decrease the total running time of the algorithm and 
improve performance.

You are now ready to begin Exercise Five.

Figure 2-37. Linear Profile Data for Convolution.cpp
VisualDSP++ 3.0 Getting Started Guide 2-53 
for SHARC DSPs



Exercise Five: Installing and Using a VCSE Component
Exercise Five: Installing and Using a 
VCSE Component 

In this exercise, you will complete the following tasks.

• Start up the VisualDSP++ environment and select a new session

• Open an existing project

• Install a VCSE component on your system

• Add the component to the project

• Build and run the program with the component

The sources for the exercise are in the vcse_component folder. The default 
installation path is:

Program files\Analog Devices\VisualDSP\21k\Examples\tutorial\ 

vcse_component
2-54 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
Step 1: Start VisualDSP++ and Open the Project
To start VisualDSP++ and open the project:

1. Click the Windows Start button and select Programs, VisualDSP, 
and VisualDSP++ Environment.

The VisualDSP++ main window appears.

If you have already run VisualDSP++ and the Reload last project 
at startup option is selected on the Project page under Settings and 
Preferences, VisualDSP++ opens the last project that you worked 
on.

To close this project, choose Close from the Project menu and 
then click No when prompted to save the project. Since you have 
made no changes to the project, you do not have to save it.

2. From the Sessions menu, choose New Session. The New Session 
dialog box appears. 

3. From the Processor list, choose the ADSP-21060 processor and 
click OK.

4. From the Project menu, choose Open.

VisualDSP++ displays the Open Project dialog box.

5. In the Look in box, open the Program Files\Analog Devices 
folder and double click the following sub-folders in succession.

VisualDSP\21k\Examples\tutorial\vcse_component

Note: This path is based on the default installation.

6. Double-click the useg711.dpj project file.

VisualDSP++ loads the project and displays messages in the Out-
put window as it processes the project settings.
VisualDSP++ 3.0 Getting Started Guide 2-55 
for SHARC DSPs



Exercise Five: Installing and Using a VCSE Component
Note: The first time that you open projects installed from the soft-
ware kit, VisualDSP++ may detect that files, folders, or both have 
moved. If you receive a “Project has been moved” message, click 
OK to continue.

The useg711 project contains a single C language source file 
useg711.c, which contains the code needed to create an instance of 
the CULawc component and to invoke the methods of the IG711 
interface.

Step 2: Install the EXAMPLES::CULawc Component
The EXAMPLES::CULawc component is distributed as part of Visu-
alDSP++ and is ready to be installed on your system.

1. From the Tools menu, select the VCSE submenu and then choose 
Manage Components.

2. In the Display field, select Downloaded component package… 
from the drop-down list.

The Open dialog box is displayed.

3. In the Look in box, open the Program Files\Analog Devices 
folder and double-click the following subfolders in succession.

VisualDSP\21k\Examples\tutorial\vcse_component

Note: This path is based on the default installation.

4. Double-click the examples_culawc_21K.vcp file.

VisualDSP++ opens the file, extracts the information about the 
component, and shows it as a downloaded component in the Com-
ponent Manager dialog box (Figure 2-38 on page 2-57).
2-56 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
5. Click the Install… button to install the component on your sys-
tem. Once the component is installed, click OK.

Figure 2-38. Component Manager Dialog Box – Downloaded Component
VisualDSP++ 3.0 Getting Started Guide 2-57 
for SHARC DSPs



Exercise Five: Installing and Using a VCSE Component
6. In the Display field, select Locally installed components from the 
drop-down list, and in the Sort by field, select Title.

Select Component for G711 which implements the mu-law 
encoding in C. Component Manager displays the dialog box 
shown in Figure 2-39.

7. Click Close to close Component Manager.

Figure 2-39. Component Manager Dialog Box – Selected Component
2-58 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
Step 3: Add the Component to Your Project
To add the newly installed component to the project:

1. From the Tools menu, select the VCSE submenu and then choose 
Add Component.

2. Click Component for G711 which implements the mu-law 
encoding in C to select it.

If you have multiple components on your system and you are not 
sure which one to add, click the expand button  to display the 
component information, as shown in Figure 2-40.

Make sure that Processor: ADSP-21k is listed for the component 
that you are adding to your project.

Figure 2-40. Expanded View of Component Information
VisualDSP++ 3.0 Getting Started Guide 2-59 
for SHARC DSPs



Exercise Five: Installing and Using a VCSE Component
3. Click Add to indicate that you want to add the component to the 
project. Component Manager displays the dialog box shown in 
Figure 2-41.

4. Click OK to add the component files to the project.

Figure 2-41. Adding Files to the Project
2-60 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs



Tutorial
Step 4: Build and Run the Program
To build and run the program:

1. From the Project menu, choose Build Project.

VisualDSP++ displays the message shown in Figure 2-42.

2. Click Yes. VisualDSP++ compiles the source files and creates the 
program.

3. From the Debug menu, choose Run to execute the program. The 
program generates the following output.

Harness to test component code generated by

EXAMPLES_CULawc.idl

Testing EXAMPLES::IG711

Test Completed result = MR_OK

You have now completed this exercise and the tutorial.

Figure 2-42. Rebuilding Files Affected by Changes to Project Settings
VisualDSP++ 3.0 Getting Started Guide 2-61 
for SHARC DSPs



Exercise Five: Installing and Using a VCSE Component
2-62 VisualDSP++ 3.0 Getting Started Guide
for SHARC DSPs


	Contents
	2 Tutorial
	Overview
	Figure 2-1. VisualDSP++ Toolbar Buttons

	Exercise One: Building and Running a C Program
	Step 1: Start VisualDSP++ and Open a Project
	Table 2-1. Session Specification �
	Figure 2-2. Project Loaded in the Project Window
	Figure 2-3. Preferences Dialog Box

	Step 2: Build the dotprodc Project
	Figure 2-4. Example of Error Message
	Figure 2-5. Output Window and Editor Window

	Step 3: Set Up the Debug Session
	Figure 2-6. New Session Dialog Box
	Table 2-2. Session Specification �
	Figure 2-7. Loading dotprodc.dxe
	Figure 2-8. Breakpoints Dialog Box

	Step 4: Run dotprodc
	Figure 2-9. Results of the dotprodc Program


	Exercise Two: Calling an Assembly Routine and Creating an LDF
	Step 1: Create a New Project
	Figure 2-10. Save New Project As Dialog Box
	Figure 2-11. Project Options Dialog Box: Project Page

	Table 2-3. Completing the Project Page
	Figure 2-12. Project Options Dialog Box: Compile Page

	Step 2: Add Source Files to dot_product_asm
	Figure 2-13. Add Files Dialog Box: Adding Source Files to the Project

	Step 3: Create a Linker Description File for the Project
	Figure 2-14. Create LDF Wizard
	Figure 2-15. Create LDF – Step 1 of 3 Page
	Figure 2-16. Create LDF – Step 2 of 3 Page
	Figure 2-17. Create LDF – Step 3 of 3 Page

	Step 4: Modify the Project Source Files
	Figure 2-18. Find Dialog Box: Locating Occurrences of /*
	Figure 2-19. Editor Window: Modifying dotprod_main.c to Call a_dot_c_asm


	Step 5: Use the Expert Linker to modify dot_prod_asm.ldf
	Figure 2-20. Output Window: Linker Error
	Figure 2-21. Expert Linker Window
	Figure 2-22. Dragging $OBJECTS onto seg_pmco

	Step 6: Rebuild and Run dot_product_asm
	Figure 2-23. dot_product_asm Successfully Built and Loaded


	Exercise Three: Plotting Data
	Step 1: Load the Convolution Program
	Figure 2-24. Loading the Convolution Program

	Step 2: Open a Plot Window
	Figure 2-25. Plot Configuration Dialog Box
	Table 2-4. Three Data Sets: Table, Input, and Output
	Figure 2-26. Plot Configuration Dialog Box with Table/Input/Output Data Sets
	Figure 2-27. Plot Window: Before Running the Convolution Program


	Step 3: Run the Convolution Program and View the Data
	Figure 2-28. Plot Window After Running the Convolution Program to Completion
	Figure 2-29. Plot Window: Selecting a Region to Magnify
	Figure 2-30. Plot Window: Magnified Result
	Figure 2-31. Plot Window: Using the Data Cursor Feature


	Exercise Four: Linear Profiling
	Step 1: Load the Convolution Program
	Step 2: Open the Profiling Window
	Figure 2-32. Setting Up Linear Profiling for the Convolution Program
	Figure 2-33. Linear Profiling Results Window (Empty)
	Figure 2-34. Filtering Samples with No Debug Information

	Step 3: Collect and Examine the Linear Profile Data
	Figure 2-35. Linear Profiling Results of Analyzing the Performance of the Convolution Program – L...
	Figure 2-36. Linear Profiling Results of Analyzing the Performance of the Convolution Program – R...
	Figure 2-37. Linear Profile Data for Convolution.cpp


	Exercise Five: Installing and Using a VCSE Component
	Step 1: Start VisualDSP++ and Open the Project
	Step 2: Install the EXAMPLES::CULawc Component
	Figure 2-38. Component Manager Dialog Box – Downloaded Component
	Figure 2-39. Component Manager Dialog Box – Selected Component

	Step 3: Add the Component to Your Project
	Figure 2-40. Expanded View of Component Information
	Figure 2-41. Adding Files to the Project

	Step 4: Build and Run the Program
	Figure 2-42. Rebuilding Files Affected by Changes to Project Settings




