
DSP First
Laboratory Exercise #1

Introduction to MATLAB

The Warm-up section of each lab should be completed during a supervised lab session and the
laboratory instructor should verify the appropriate steps by initialing on the Instructor Verifi-
cation line. An instructor verification page can be found at the end of this lab.

1 Overview and Goals

Matlab will be used extensively in all the succeeding labs. The goal of this first lab is to gain
familiarity with Matlab and build some basic skills in the Matlab language. Please read the
material on Using Matlab in the text for a more complete overview. If you desire an in-depth
presentation that covers most of the language, consult the Matlab reference manual which is also
available on-line with a web-browser interface.

There are several specific objectives in this lab:

1. Learn to use the help system to study basic Matlab commands and syntax.

2. Write your own functions and m-files’s in Matlab.

3. Learn some advanced programming techniques for Matlab, i.e., vectorization.

2 Warm-up

Each lab will start with a warm-up section like this one. The warm-up usually consists of a few
simple exercises to introduce Matlab commands. Since this is the first lab, make sure that you
have installed the DSP First Toolbox for Matlab. Refer to the instructions on the DSP First
CD-ROM. When you start Matlab on your computer, the path should include a directory called
dspfirst.

2.1 Basic Commands

The following exercises will begin your orientation in Matlab.

(a) View the Matlab introduction by typing intro at the Matlab prompt. This short intro-
duction will demonstrate some of the basics of using Matlab.

(b) Explore the Matlab help capability. Type each of the following lines to read about these
commands:

help
help plot
help colon
help ops
help zeros
help ones
lookfor filter %<--- keyword search

If the lines scroll past the bottom of the screen, it is possible to force Matlab to display only
one screen-full of information at a time by issuing the command more on.

1

(c) Use Matlab as a calculator. Try the following:
pi*pi - 10
sin(pi/4)
ans ^ 2 %<--- "ans" holds the last result

(d) Variable names can store values and matrices in Matlab. Try the following:
xx = sin(pi/5);
cos(pi/5) %<--- assigned to what?
yy = sqrt(1 - xx*xx)
ans

(e) Complex numbers are natural in Matlab. Notice that the names of some basic operations
are unexpected, e.g., abs for magnitude. Try the following:

zz = 3 + 4i
conj(zz)
abs(zz)
angle(zz)
real(zz)
imag(zz)
help zprint %- requires DSP First Toolbox
exp(sqrt(-1)*pi)
exp(j*[pi/4 -pi/4])

(f) Plotting is easy in Matlab, for both real and complex numbers. The basic plot command
will plot a vector yy versus a vector xx. Try the following:

xx = [-3 -1 0 1 3];
yy = xx.*xx - 3*xx;
plot(xx, yy)
zz = xx + yy*sqrt(-1);
plot(zz) %<---- complex values can be plotted

Drop the semicolons, if you want to display the values in the x, y, and z vectors. Use
help arith to learn how the operation xx.*xx works; compare to matrix multiply.

When unsure about a command, use help.

2.2 MATLAB Array Indexing

(a) Make sure that you understand the colon notation. In particular, explain what the following
Matlab code will produce

jkl = 2 : 4 : 17
jkl = 99 : -1 : 88
ttt = 2 : (1/9) : 4
tpi = pi * [2 : (-1/9) : 0]

(b) Extracting and/or inserting numbers in a vector is very easy to do. Consider the following
definition:

xx = [ones(1,4), [2:2:11], zeros(1,3)]
xx(3:7)
length(xx)
xx(2:2:length(xx))

Explain the result echoed from the last three lines of the above code.

2

(c) In the previous part, the vector x contains 12 elements. Observe the result of the following
assignment:

xx(3:7) = pi*(1:5)

Now write a statement that will replace the odd-indexed elements of xx with the constant
−77 (i.e., xx(1), xx(3), etc). Use a vector indexing and vector replacement.

Instructor Verification (separate page)

2.3 MATLAB Script Files

(a) Experiment with vectors in Matlab. Think of a vector as a list of numbers. Try the following:
kset = -3:11;
kset
cos(pi*kset/4) %<---comment: compute cosines

Explain how the last example computes the different values of cosine without a loop. The
text following the % is a comment; it may be omitted. If you remove the semicolon at the end
of the first statement, all the elements of kset will be echoed to the screen.

(b) Vectorization is an essential programming skill in Matlab. Loops can be done in Matlab,
but they are not the most efficient way to get things done. It’s better to avoid loops and use
the vector notation instead. For example, the code below uses a loop to compute values of
the sine function. Rewrite this computation without using the loop (as in the previous part).

xx = []; %<--- initialize the x vector to a null
for k=0:7

xx(k+1) = sin(k*pi/4) %-- xx(0) would fail
end
x

(c) Use the built-in Matlab editor (on Windows or a Mac), or an external one such as emacs or
notepad (on UNIX or DOS), to create a script file called funky.m containing the following
lines:

tt = -2 : 0.05 : 3;
xx = sin(2*pi*0.789*tt);
plot(tt, xx), grid on %<--- plot a sinusoid
title(’TEST PLOT of SINUSOID’)
xlabel(’TIME (sec)’)

(d) Run your script from Matlab. To run the file funky that you created in part (c), try

funky %<---will run the commands in the file
type funky %<---will type out the contents of

% funky.m to the screen
which funky %<---will show directory containing funky.m

(e) Add three lines of code to your script, so that it will plot a cosine on top of the sine. Use the
hold function to add a plot of

0.5*cos(2*pi*0.789*tt)

3

to the plot created in part (c). See help hold in Matlab.

Instructor Verification (separate page)

2.4 MATLAB Demos

There are many demonstration files in Matlab. Run the Matlab demos from a menu by typing
demo, and explore some of the different demos of basic Matlab commands and plots.

When unsure about a command, use help.

2.5 MATLAB Sound

(a) Run the Matlab sound demo by typing xpsound at the Matlab prompt. If you are unable
to hear the sounds in the Matlab demo then check the sound hardware on your machine.
Since there are so many variations in the types of sound hardware on different computers, this
may require consultation with an expert in system configuration and/or Matlab installation.

(b) Now generate a tone (i.e., a sinusoid) in Matlab and listen to it with the sound command.
The frequency of your tone should be 2 KHz and the duration should be 1 sec. The following
lines of code should be saved in a file called mysound.m and run from the command line.

dur = 1.0;
fs = 8000;
tt = 0 : (1/fs) : dur;
xx = sin(2*pi*2000*tt);
sound(xx, fs)

The sound hardware will convert the vector of numbers xx into a sound waveform at a certain
rate, called the sampling rate. In this case, the sampling rate is 8000 samples/second, but
other values might be used depending on the capability of sound hardware. What is the length
of the vector xx? Read the online help for sound (or soundsc) to get more information on
using this command.

Instructor Verification (separate page)

2.6 Functions

The following warm-up exercises are to help you in writing functions in Matlab. Although these
examples contain minor errors, they do exemplify the correct structure and syntax for writing
functions.

(a) Find the mistake in the following function:

function xx = cosgen(f,dur)
%COSGEN Function to generate a cosine wave
% usage:
% xx = cosgen(f,dur)
% f = desired frequency
% dur = duration of the waveform in seconds
%
tt = [0:1/(20*f):dur]; % gives 20 samples per period
yy = cos(2*pi*f*tt);

4

(b) Find the mistake in the following function:

function [sum,prod] = sumprod(x1,x2)
%SUMPROD Function to add and multiply two complex numbers
% usage:
% [sum,prod] = sumprod(x1,x2)
% x1 = a complex number
% x2 = another complex number
% sum = sum of x1 and x2
% prod = product of x1 and x2
%
sum = z1+z2;
prod = z1*z2;

(c) Explain the following lines of Matlab code:

yy = ones(7,1) * rand(1,4);

xx = randn(1,3);
yy = xx(ones(6,1),:);

(d) Write a function that performs the same task as the following without using a for loop.
Consult the matrix multiplication section in the appendix on Using Matlab for some clever
solutions.

function Z = expand(xx,ncol)
%EXPAND Function to generate a matrix Z with identical columns
% equal to an input vector xx
% usage:
% Z = expand(xx,ncol)
% xx = the input vector containing one column for Z
% ncol = the number of desired columns
%
xx = xx(:); %-- makes the input vector x into a column vector
Z = zeros(length(xx),ncol);
for i=1:ncol

Z(:,i) = xx;
end

2.7 Vectorization

(a) Explain the following lines of Matlab code:

A = randn(6,3);
A = A .* (A>0);

(b) Write a new function that performs the same task as the following function without using a
for loop. Use the idea in part (a) and also consult section on vector logicals in the Using
Matlab section of the appendix. In addition, the Matlab logical operators are summarized
via help relop.

5

function Z = replacez(A)
%REPLACEZ Function that replaces the negative elements
% of a matrix with the number 77
% usage:
% Z = replacez(A)
% A = input matrix whose negative elements are to
% be replaced with 77
%
[M,N] = size(A);
for i=1:M

for j=1:N
if A(i,j) < 0

Z(i,j) = 77;
else

Z(i,j) = A(i,j);
end

end
end

Instructor Verification (separate page)

3 Exercises: Using MATLAB

The following exercise can be completed at your convenience. Results from each part should be
included in a brief lab report write-up.

3.1 Manipulating Sinusoids with MATLAB

Generate two 3000 hertz sinusoids with different amplitudes and phases.

x1(t) = A1 cos(2π(3000)t+ φ1) x2(t) = A2 cos(2π(3000)t+ φ2)

(a) Select the value of the amplitudes as follows: let A1 = 13 and use your age for A2. For
the phases, use the last two digits of your telephone number for φ1 (in degrees), and take
φ2 = −30◦. When doing computations in Matlab, make sure to convert degrees to radians.

(b) Make a plot of both signals over a range of t that will exhibit approximately 3 cycles. Make
sure the plot starts at a negative time so that it will include t = 0, and make sure that your
have at least 20 samples per period of the wave.

(c) Verify that the phase of the two signals x1(t) and x2(t) is correct at t = 0, and also verify
that each one has the correct maximum amplitude.

(d) Use subplot(3,1,1) and subplot(3,1,2) to make a three-panel subplot that puts both of
these plots on the same window. See help subplot.

(e) Create a third sinusoid as the sum: x3(t) = x1(t) + x2(t). In Matlab this amounts to
summing the vectors that hold the samples of each sinusoid. Make a plot of x3(t) over the
same range of time as used in the previous two plots. Include this as the third panel in the
window by using subplot(3,1,3).

6

(f) Measure the magnitude and phase of x3(t) directly from the plot. In your lab report, explain
how the magnitude and phase were measured by making annotations on each of the plots.

4 Lab Review Questions

In general, your lab write-up should indicate that you have acquired a better understanding of the
topics treated by the laboratory assignment. Here are a few questions for you to answer in order
to assess your understanding of this lab’s objective: a working knowledge of the basics of Matlab.
If you do not know the answers to these questions go back to the lab and try to figure them out in
Matlab (remember the commands help and lookfor).

1. You saw how it easy it is for Matlab to generate and manipulate vectors (i.e., 1-dimensional
arrays of numbers). For example, consider the following:

yy = 0:10;
yy = zeros(1,25);
yy = 1:.25:5;

(a) How would you modify one of the above lines of Matlab code to create a vector that
steps from 0 to 10 in steps of 1

2?

(b) How would you modify one of the lines in the code to create a vector of one hundred
100’s?

2. You also learned that Matlab has no problem handling complex numbers . Consider the
following line of code:

yy = 3 + 5j;

(a) How do you get Matlab to return the magnitude of the complex number yy?

(b) How do you get Matlab to return the phase of the complex number yy? What are the
units of the answer?

3. In Section 2.3, you learned that multiple lines of Matlab code can be stored in a file with
a .m extension. Matlab then executes the code in the order that it appears in the file.
Consider the following file, named example.m:

f = 200;
tt = [0:1/(20*f):1];
z = exp(j*2*pi*f*tt);
subplot(211)
plot(real(z))
title(’Real part of exp(j*2*pi*200*tt)’)
subplot(212)
plot(imag(z))
title(’Imaginary part of exp(j*2*pi*200*tt)’)

7

(a) How do you execute the file from the Matlab prompt?

(b) Suppose the file were named example.dog. Would it run? How could you change it to
make it work in Matlab?

(c) Assuming the M-file runs, what do you expect the plots to look like? If you’re not sure
type in the code and run it.

8

Lab 1
Instructor Verification Sheet

Staple this page to the end of your Lab Report.

Name: Date:

Part 2.2 Vector replacement using the colon operator:

Verified:

Part 2.3 Run the modified function funky from a file:

Verified:

Part 2.5 Use sound to play a 2 kHz tone in Matlab:

Verified:

Part 2.7 Modify replacez using vector logicals:

Verified:

9

