DSP First

Laboratory Exercise #4
AM and FM Sinusoidal Signals

The objective of this lab is to introduce more complicated signals that are related to the basic
sinusoid. These are signals which implement frequency modulation (FM) and amplitude modu-
lation (AM) are widely used in communication systems such as radio and television), but they
also can be used to create interesting sounds that mimic musical instruments. There are a num-
ber of demonstrations on the CD-ROM that provide examples of these signals for many different
conditions.

1 Overview
We have spent a lot of time learning about the properties of sinusoidal waveforms of the form:
z(t) = Acos(2r fot + ¢) = Re {Aej¢ej27ff0t} M

In this lab, we will continue to investigate sinusoidal waveforms, but for more complicated signals
composed of sums of sinusoidal signals, or sinusoids with changing frequency.

1.1 Amplitude Modulation

If we add several sinusoids, each with a different frequency (fx) we can express the result as:

N N .
z(t) = ZAk cos(2m ft + ¢r) = %e{ZZk eﬂwfkt} (2)

k=1 k=1

where 7, = Akej Pk is the complex exponential amplitude. The choice of f; will determine the
nature of the signal—for amplitude modulation we pick two or three frequencies very close together,
see Chapter 3.

1.2 Frequency Modulated Signals

We will also look at signals in which the frequency varies as a function of time. In the constant-
frequency sinusoid (1) the argument of the cosine is also the exponent of the complex exponential,
so the phase of this signal is the exponent (27 fot + ¢). This phase function changes linearly versus
time, and its time derivative is 27 fy which equals the constant frequency of the cosine.
A generalization is available if we adopt the following notation for the class of signals with
time-varying phase:
2(t) = Acos(ip(t)) = Re{ATP (1)} (3)

The time derivative of the phase from (3) gives a frequency

d

wi(t) = o

(t) (rad/sec)

but we prefer units of hertz, so we divide by 27 to define the instantaneous frequency:

CD-ROM

FM Syn-
thesis

CD-ROM

FM Syn-
thesis

1.3 Chirp, or Linearly Swept Frequency

A chirp signal is a sinusoid whose frequency changes linearly from some low value to a high one. The
formula for such a signal can be defined by creating a complex exponential signal with quadratic
phase by defining v(¢) in (3) as

Y(t) = 2mpt? + 2 fot + ¢

The derivative of () yields an instantaneous frequency (4) that changes linearly versus time.
fi(t) =2ut + fo

The slope of f;(t) is equal to 2u and its intercept is equal to fo. If the signal starts at ¢ = 0, then
fo is also the starting frequency. The frequency variation produced by the time-varying phase is
called frequency modulation, and this class of signals is called FM signals. Finally, since the linear
variation of the frequency can produce an audible sound similar to a siren or a chirp, the linear-FM
signals are also called “chirps.”

1.4 Advanced Topic: Spectrograms

It is often useful to think of signals in terms of their spectra. A signal’s spectrum is a representation
of the frequencies present in the signal. For a constant frequency sinusoid as in (1) the spectrum
consists of two spikes, one at 27 fy, the other at —2x fy. For more complicated signals the spectra
may be very interesting and, in the case of FM, the spectrum is considered to be time-varying.
One way to represent the time-varying spectrum of a signal is the spectrogram (see Chapter 3 in
the text). A spectrogram is found by estimating the frequency content in short sections of the
signal. The magnitude of the spectrum over individual sections is plotted as intensity or color on
a two-dimensional plot versus frequency and time.
There are a few important things to know about spectrograms:

1. In MATLAB the function specgram will compute the spectrogram, as already explained in
Lab 3. Type help specgram to learn more about this function and its arguments.

2. Spectrograms are numerically calculated and only provide an estimate of the time-varying
frequency content of a signal. There are theoretical limits on how well they can actually
represent the frequency content of a signal. Lab 11 will treat this problem when we use the
spectrogram to extract the frequencies of piano notes.

2 Warm-up

The instructor verification sheet may be found at the end of this lab.

2.1 MATLAB Synthesis of Chirp Signals

(a) The following MATLAB code will synthesize a chirp:

fsamp = 8000;
dt = 1/fsamp;
dur = 1.8;

tt =0 : dt : dur;

psi = 2%pix (100 + 200*tt + 500*tt.*tt);
xx = real(7.7*xexp(j*psi));

sound(xx, fsamp);

CD-ROM

Spectrograms

Sounds:
Wide-
band
FM

CD-ROM

Sounds
& Spec-
trograms

Determine the range of frequencies (in hertz) that will be synthesized by this MATLAB script.
Make a sketch by hand of the instantaneous frequency versus time. What are the minimum
and maximum frequencies that will be heard? Listen to the signal to verify that it has the
expected frequency content.

‘ Instructor Verification (separate page) ‘

(b) Use the code provided in part (a) to help you write a MATLAB function that will synthesize
a “chirp” signal according to the following comments:

function xx = mychirp(f1, f2, dur, fsamp)

AMYCHIRP generate a linear-FM chirp signal

b

% usage: xx = mychirp(f1, £f2, dur, fsamp)

)

h f1 = starting frequency

/) £2

h dur

% fsamp

b

if(nargin < 4) %-- Allow optional input argument
fsamp = 8000;

end

ending frequency
total time duration
sampling frequency (OPTIONAL: default is 8000)

When unsure about a command, use help.

Generate a chirp sound to match the frequency range of the chirp in part (a). Listen to
the chirp using the sound function. Also, compute the spectrogram of your chirp using the
MATLAB function: specgram(xx, [],fsamp).

‘ Instructor Verification (separate page) ‘

3 Lab A: Chirps and Beats

3.1 Synthesize a Chirp

Use your MATLAB function mychirp to synthesize a “chirp” signal for your lab report. Use the
following parameters:

1. A total time duration of 3 secs. with a D/A conversion rate of fs = 8000 Hz.
2. The instantaneous frequency starts at 15,000 Hz and ends at 300 Hz.

Listen to the signal. What comments can you make regarding the sound of the chirp (e.g. is it
linear)? Does it chirp down, or chirp up, or both? Create a spectrogram of your chirp signal. Use
the sampling theorem (from Chapter 4 in the text) to help explain what you hear and see.

3.2 Beat Notes

In the section on beat notes in Chapter 3 of the text, we analyzed the situation in which we had
two sinusoidal signals of slightly different frequencies; i.e.,

z(t) = Acos(2m(fe — fa)t) + B cos(2m(fe + fa)t) (5)
In this part, we will compute samples of such a signal and listen to the result.

(a) Write an M-file called beat.m that implements (5) and has the following as its first lines:

function [xx, tt] = beat(A, B, fc, delf, fsamp, dur)
%BEAT compute samples of the sum of two cosine waves
% usage:

% [xx, tt] = beat(A, B, f, delf, fsamp, dur)

b

% A = amplitude of lower frequency cosine
% B = amplitude of higher frequency cosine
% fc = center frequency

% delf = frequency difference

% fsamp = sampling rate

h dur = total time duration in seconds

% XX = output vector of samples

%-—-0PTIONAL Qutput:

A tt = time vector corresponding to xx

Hand in a copy of your M-file. You might want to call the sumcos written in Lab 2 to do

the calculation. The function could also generate its own time vector. You may elect to not
implement the second output vector tt, but it is quite convenient for plotting. To assist you
in your experiments with beat notes a new tool called beatcon has been created. This user ~2FOM
interface controller actually calls your function beat .m. Therefore, before you invoke beatcon
you should be sure your M-file is free of errors. Once you have the function beat.m working
properly invoke the demo/tool by typing beatcon at the MATLAB prompt A small control
panel will appear on the screen with buttons and sliders that vary the different parameters
for these exercises. Experiment with the beatcon control panel and use it to complete the
remainder of exercises in this section.

beatcon.m

(b) Test the M-file written in part (a) via beatcon by using the values A=10, B=10, £c=1000,
delf=10, fsamp=8000, and dur=1 secs. Plot the first 0.2 seconds of the resulting signal.
Describe the waveform and explain its properties. Hand in a copy of your plot with measure-
ments of the period of the “envelope” and period of the high frequency signal underneath the
envelope.

(c) For this part, set delf to 10 Hz. Send the resulting signal to the D-to-A converter and
listen to the sound (there is a button on beatcon that will do this for you automatically).
Explain the nature of the sound based on the waveform plotted in part (b) and on the theory
developed in Chapter 3.

(d) Experiment with different values of the frequency difference fa.

3.3 More on Spectrograms (Optional)

Beat notes provide an interesting way to investigate the time-frequency characteristics of spectro-
grams. Although some of the mathematical details are beyond the reach of this course, it is not
difficult to understand the following issue: there is a fundamental trade-off between knowing which
frequencies are present in a signal (or its spectrum) and knowing how those frequencies vary with
time. As mentioned previously in Section 1.4, a spectrogram estimates the frequency content over
short sections of the signal. Long sections give excellent frequency resolution, but fail to track
frequency changes well. Shorter sections have poor frequency resolution, but good tracking. This
trade-off between the section length (in time) and frequency resolution is equivalent to Heisenburg’s
Uncertainty Principle in physics. More discussion of the spectrogram can be found in Chapter 9
and Lab 11.

A beat note signal may be viewed as a single frequency signal whose amplitude varies with time,
or as two signals with different constant frequencies. Both views will be useful in evaluating the
effect of window length when finding the spectrogram of a beat signal.

(a) Create and plot a beat signal with

(i) fa =32 Hz

(ii) Tqur = 0.26 sec
(iif) f, = 8000 Hz, or 11,025 Hz
(iv) fo = 2000 Hz

(b) Find the spectrogram using a window length of 2048 using the commands:
specgram(x,2048,fsamp); colormap(l-gray(256)).
Comment on what you see.

(c) Find the spectrogram using a window length of 16 using the commands:
specgram(x,16,fsamp); colormap(l-gray(256)).
Comment on what you see.

4 Lab B: FM Synthesis of Instrument Sounds

Frequency modulation (FM) can be used to make interesting sounds that mimic musical instru-
ments, such as bells, woodwinds, drums, etc. The goal in this lab is to implement one or two of
these FM schemes and hear the results.

We have already seen that FM defines the signal z(¢) to have a time-varying phase

(t) = Acos(4(t))

and that the instantaneous frequency (4) changes according to the oscillations of (t). If 1)(%)
is linear, z(t) is a constant-frequency sinusoid; whereas, if 9)(t) is quadratic, z(¢) is a chirp signal
whose frequency changes linearly in time. FM music synthesis uses a more interesting (%), one that
is sinusoidal. Since the derivative of a sinusoidal () is also sinusoidal, the instantaneous frequency
of z(t) will oscillate. This is useful for synthesizing instrument sounds because the proper choice of
the modulating frequencies will produce a fundamental frequency and several overtones, as many
instruments do.
The general equation for an FM sound synthesizer is:

z(t) = A(t) cos (2 fet + I(t) cos(2m fint + Pm) + ¢c) (6)

CD-ROM
DEMO:
FM-
Synthesis

where A(t) is the signal’s amplitude. It is a function of time so that the instrument sound can be
made to fade out slowly or cut off quickly. Such a function is called an enwvelope. The parameter
fe is called the carrier frequency. Note that when you take the derivative of 1(¢) to find f;(¢),

fil) = 5o o)

d
- %% (27 fot 4 I(t) cos(2m fnt + bm) + be)

= fe—I(t) frmnsin(fint + dm) + ﬁ

dt co8 (27 fimt + Pm) (7)

fe will be a constant in that expression. It is the frequency that would be produced without any
frequency modulation. The parameter f,, is called the modulating frequency. It expresses the rate
of oscillation of f;(t). The parameters ¢,, and ¢, are arbitrary phase constants, usually both set
to —m/2 so that x(0) = 0.

The function I(¢) has a less obvious purpose than the other FM parameters in (6). It is
technically called the modulation index envelope. To see what it does, examine the expression
for the instantaneous frequency (7). The quantity I(t)f, multiplies a sinusoidal variation of the

frequency. If I(t) is constant or — is relatively small, then I(t)f,, gives the maximum amount by

which the instantaneous frequency deviates from f.. Beyond that, however, it is difficult to relate
I(t) to the sound made by z(t) without some rather tedious mathematical analysis.

In our study of signals, we would like to characterize x(t) as the sum of several constant-
frequency sinusoids instead of a single signal whose frequency changes. In this regard, the following
comments are relevant: when I(¢) is small (e.g., I = 1), low multiples of the carrier frequency
(fc) have high amplitudes. When I(¢) is large (I > 4), both low and high multiples of the carrier
frequency have high amplitudes. The net result is that I(¢) can be used to vary the harmonic
content of the instrument sound (called overtones). When I(t) is small, mainly low frequencies will
be produced. When I(#) is large, higher harmonic frequencies can also be produced. Since I(t) is
a function of time, the harmonic content will change with time. For more details see the paper by
Chowning.'

4.1 Generating the Bell Envelopes

Now we take the general FM synthesis formula (6) and specialize for the case of a bell sound. The
amplitude envelope A(t) and the modulation index envelope I(t) for the bell are both decaying
exponentials. That is, they both have the following form:

y(t) =T (8)

where 7 is a parameter that controls the decay rate of the exponential. Notice that y(0) = 1 and
y(7) = 1/e, so 7 is the time it takes a signal of the form (8) to decay to 1/e = 36.8% of its initial
value. For this reason, the parameter 7 is called the time constant.

Use (8) to write a MATLAB function that will generate a decaying exponential to be used later
in synthesizing a bell sound. The file header should look like this:

!Ref: John M. Chowning, “The Synthesis of Complex Audio Spectra by means of Frequency Modulation,” Journal
of the Audio Engineering Society, vol. 21, no. 7, Sept. 1973, pp. 526-534.

function yy = bellenv(tau, dur, fsamp);
#BELLENV produces envelope function for bell sounds
to

h usage: yy = bellenv(tau, dur, fsamp);

)

b where tau = time constant

/) dur = duration of the envelope

h fsamp = sampling frequency

/) returns:

b yy = decaying exponential envelope

h

% note: produces exponential decay for positive tau

The function will be one or two lines of MATLAB code. The first line should define your time vector
based on fsamp and dur, and the second generates the exponential (8).
The bell’s amplitude envelope, A(t), and modulation index envelope, I(t) are identical, up to a

scale factor.
A(t) = Age_t/T and I(t) = Ige_t/T

Hence, one call to the bellenv function will generate the shape for both envelopes.

4.2 Parameters for the Bell

Now that we have the bell’s amplitude and modulation index envelopes, we can create the actual
sound signal for the bell by specifying all the parameters in the general FM synthesis formula (6).
The frequencies f. and f,, must be given numerical values. The ratio of carrier to modulating
frequency is important in creating the sound of a specific instrument. For the bell, a good choice
for this ratio is 1:2, e.g., f. = 110 Hz and f,, = 220 Hz.

Now write a simple M-file bell.m that implements (6) to synthesize a bell sound. Your function

should call bellenv.m to generate A(t) = Aoe_t/T and I(t) = Ioe_t/T.

function =xx = bell(ff, Io, tau, dur, fsamp)

%BELL produce a bell sound

b

A usage: xx = bell(ff, Io, tau, dur, fsamp)

b

h where: ff = frequency vector (containing fc and fm)

A Io = scale factor for modulation index

h tau = decay parameter for A(t) and I(t)
b dur = duration (in sec.) of the output signal
h fsamp = sampling rate

4.3 The Bell Sound

Test your bell() function using the parameters of case #1 in the table. Play it with the sound ()
function at 11,025 Hz.? Does it sound like a bell? The value of I = 10 for scaling the modulation

2A higher sampling rate of 11,025 Hz is used because the signal contains many harmonics, some of which might
alias if a lower fs were used. You should experiment with lower values of fs to see if you can hear a difference, e.g.,

index envelope is known to give a distinctive sound. Later on, you can experiment with other values
to get a variety of bells.

‘ CASE ‘ fe (Hz) ‘ fm (Hz) ‘ Iy ‘ 7 (sec) ‘ Taur (sec) ‘ fs (Hz) ‘

1 110 220 10 2 6 11,025
2 220 440) 2 6 11,025
3 110 220 10 12 3 11,025
4 110 220 10 0.3 3 11,025
) 250 350)) 11,025
6 250 350 3 1) 11,025

The frequency spectrum of the bell sound is very complicated, but it does consist of spectral
lines, which can be seen with a spectrogram. Among these frequencies, one spectral line will
dominate what we hear. We would call this the note frequency of the bell. It is tempting to guess
that the note frequency will be equal to f., but you will have to experiment to find the true answer.
It might be f,, or it might be something else—perhaps the fundamental frequency which is the
greatest common divisor of f. and fy,.

For each case in the table, do the following:

(a) Listen to the sound by playing it with the sound() function.

(b) Calculate the fundamental frequency of the “note” being played. Explain how you can verify
by listening that you have the correct fundamental frequency.

(c) Describe how you can hear the frequency content changing according to I(t). Plot f;(t) versus
t for comparison.

(d) Display a spectrogram of the signal. Describe how the frequency content changes, and how
that change is related to I(¢). Point out the “harmonic” structure of the spectrogram, and
calculate the fundamental frequency, fo.

(e) Plot the entire signal and compare it to the envelope A(t) generated by bellenv.

(f) Plot about 100-200 samples from the middle of the signal and explain what you see, especially
the frequency variation.

If you are making a lab report, do the plots for two cases—choose one of the first four and one
of the last two. Write up an explanation only for the two that you choose.

4.4 Comments about the Bell

Cases #3 and #4 are extremes for choosing the decay rate 7. In case #3, the waveform does not
decay very much over the course of three seconds and sounds a little like a sum of harmonically
related sinusoids. With a “faster” decay rate, as in case #4, we get a percussion-like sound.
Modifying the fundamental frequency fy (determined in part (d) above) should have a noticeable
effect on the tone you hear. Try some different values for fy by changing f. and f,,, but still in the
ratio of 1:2. Describe what you hear.

Finally, experiment with different carrier to modulation frequency ratios. For example, in his
paper, Chowning uses a fundamental frequency of fy = 40 Hz and a carrier to modulation frequency
ratio of 5:7. Try this and a few other values. Which parameters sound “best” to you?

f. = 8000 Hz.

5 Woodwinds

As an alternative to the bell sounds, this section shows how different parameters in the same FM
synthesis formula (6) will yield a clarinet sound, or other woodwinds.

5.1 Generating the Envelopes for Woodwinds

There is a function on the CD-ROM called woodwenv which produces the functions needed to "<RoM

create both the A(t) and I(t) envelopes for a clarinet sound. The file header looks like this:

woodwenv.m

function [yl, y2] = woodwenv(att, sus, rel, fsamp)

%WOODWENV produce normalized amplitude and modulation index
% functions for woodwinds

yA

% usage: [yl, y2] = woodwenv(att, sus, rel, fsamp);

%
% where att = attack TIME

A sus = sustain TIME

% rel = release TIME

% fsamp = sampling frequency (Hz)

% returns:

% yl = (NORMALIZED) amplitude envelope

% y2 = (NORMALIZED) modulation index envelope

yA

(]

% NOTE: attack is exponential, sustain is constant,
b release is exponential

The outputs from woodwenv are normalized so that the minimum value is zero and the max is one.
Try the following statements to see what the function produces:

fsamp = 8000;

Ts = 1/fsamp;

tt = delta : Ts : 0.5;

[yl, y2] = woodwenv(0.1, 0.35, 0.05, fsamp);
subplot(2,1,1), plot(tt,yl), grid on
subplot(2,1,2), plot(tt,y2), grid on

5.2 Scaling the Clarinet Envelopes

Since the woodwind envelopes produced by woodwenv range from 0 to 1, some scaling is necessary
to make them useful in the FM synthesis equation (6). In this section, we consider the general
process of linear re-scaling. If we start with a normalized signal ynorm () and want to produce a
new signal whose max is ymax and whose min is ypiy, then we must map 1 to ymax and 0 to ymin-
Consider the linear mapping:

ynew(t) = aynorm(t) + 0 (9)
Determine the relationship between « and § and ymax and ymin, so that the max and the min of
Unew (t) are correct.
Test this idea in MATLAB by doing the following example (where & =5 and § = 3):

ynorm = 0.5 + 0.5*sin(pi*[0:0.01:1]);
subplot(2,1,1), plot(ynorm)

alpha = 5; beta = 3;

ynew = alpha*ynorm + beta; h<===——= Linear re-scaling
subplot(2,1,1), plot(ynew)

max (ynorm), min(ynorm) %<--- ECHO the values

max(ynew), min(ynew)

What happens if we make « negative?
Write a short one-line function that implements (9) above. Your function should have the following
form: function y = scale(data, alpha, beta).

5.3 Clarinet Envelopes

For the clarinet sound, the amplitude A(t) needs no scaling—the MATLAB function sound will
automatically scale to the maximum range of the D/A converter. Thus, A(t) equals the vector y1.
From the plot of y1 shown in Fig. 1, it should be obvious that this envelope will cause the sound
to rise quickly to a certain volume, sustain that volume, and then quickly turn off.

y1 Envelope y2 Envelope
1t 1
0.5¢ 1 0.5
0 : : : 0 : : :
0 0.5 1 15 2 0 0.5 1 15 2
A(t) Envelope I(t) Envelope
1r 1 4 \
0.5¢ . 2
0 0
0 0.5 1 15 2 0 0.5 1 15 2

time (1) time (1)

Figure 1: Envelopes for the woodwinds. The functions A(t) and I(¢) are produced by scaling y1
and y2, the outputs of woodwenv.

The modulation index envelope, I(t), however, does not equal y2. The range for I(¢) lies between
2 and 4 as in Fig. 1. Furthermore, there is an inversion so that when y2 is zero, I(¢) should equal
4, and when y2 is one, I(t) should be 2. Using this information solve for the appropriate o and (3
then use scale to produce the modulation index envelope function (I) for a clarinet sound.

5.4 Parameters for the Clarinet

So far we have a general equation for FM signals, an amplitude envelope for the clarinet, and a
modulation index envelope for the clarinet. To create the actual sound signal for the clarinet, we
need to specify the additional parameters in (6). The ratio of carrier to modulating frequency is
important in creating the sound of a specific instrument. For the clarinet, this ratio should be
2:3. The actual note frequency will be the greatest common divisor of the carrier and modulating

10

frequencies. For example, when we choose f. = 600 Hz and f,, = 900 Hz, the synthesized signal
will have a fundamental frequency of fy = 300 Hz.

Write a simple M-file clarinet .m that implements the FM synthesis equation (6) to synthesize
a clarinet note. Your function should generate the envelopes A(t) and I(t) using textttscale and
textttwoodwenv. The function header should look like this:

function yy = clarinet(f0, Aenv, Ienv, dur, fsamp)

%CLARINET produce a clarinet note signal

b

% usage: yy = clarinet(f0, Aenv, Ienv, dur, fsamp)
b

% where: fO = note frequency

% Aenv = the array holding the A(t) envelope
% Ienv = the array holding the I(t) envelope
% dur = the amount of time the signal lasts
% fsamp = the sampling rate

5.5 Experiment with the Clarinet Sound

Using your clarinet () function, create a 250 Hz clarinet note with f; = 8000 or 11,025 Hz. Play
it with the sound(xnote, fs) function. Does it sound like a clarinet? How can you verify that
its fundamental frequency is at 250 Hz?

Explain how the modulation index I(t) will affect the frequency content versus time of the
clarinet sound. Describe how you can hear the frequency content changing according to I(¢)? Plot
the instantaneous frequency f;(t) versus ¢ for comparison.

Plot the entire signal and compare it to the amplitude envelope function y1 in Fig. 1. Plot
about 100-200 samples from the middle of the signal and explain what you see.

Finally, synthesize other note frequencies. For example, make the C-major scale (defined in
Lab 3) consisting of seven consecutive notes.

11

Lab 4

Instructor Verification Sheet
Staple this page to the end of your Lab Report.

Name: Date:

Part 2.1 Explain chirp signal:

Verified:

Part 2.1 Complete the mychirp.m function:

Verified:

12

