DSP First

Laboratory Exercise #b5
FIR Filtering of Sinusoidal Waveforms

The goal of this lab is to learn how to implement FIR filters in MATLAB, and then study the
response of FIR filters to inputs such as complex exponentials. In addition, we will use FIR filters
to study properties such as linearity and time-invariance.

1 Overview of Filtering

For this lab, we will define an FIR filter as a discrete-time system that converts an input signal
z[n] into an output signal y[n] by means of the weighted summation:

yln] =) _ by zln — k] (1)
k=0

Equation (1) gives a rule for computing the n'" value of the output sequence from certain values of
the input sequence. The filter coefficients {by} are constants that define the filter’s behavior. As
an example, consider the system for which the output values are given by

yln] = 3aln] + goln — 1] + 3a[n - 2] (2)

= ={z[n]+zn—1]+z[n — 2]}

This equation states that the n'' value of the output sequence is the average of the n'" value of
the input sequence x[n] and the two preceding values, z[n — 1] and z[n — 2]. For this example the
by’s are by = %, by = é, and by = %

MATLAB has a built-in function for implementing the operation in (1); namely, the function
filter( ), but we have also supplied another M-file firfilt( ) for the special case of FIR fil-
tering. The function filter function implements a wider class of filters than just the FIR case.
Technically speaking, the firfilt function implements an operation called conwvolution, although
we will not be concerned with the meaning of that terminology right now. The following MATLAB
statements implement the three-point averaging system of (2):

nn = 0:99; %<--Time indices
xx = cos( 0.08*pi*nn ); h<--Input signal
bb = [1/3 1/3 1/3]; %<--Filter coefficients
yy = firfilt(bb, xx); h<--Compute the output

In this case, the input signal x is a vector containing a cosine function. In general, the vector b
contains the filter coefficients {b; } needed in (1). These are loaded into the b vector in the following
way:

bb = [b0O, bl, b2, ... , bM].

In MATLAB, all sequences have finite length because they are stored in vectors. If the input
signal has, for example, L samples, we would normally only store the L non-zero samples, and
would assume that z[n] = 0 for n outside the interval of L samples; i.e., we do not have to store the
zero samples unless it suits our purposes. If we process a finite-length signal through (1), then the
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output sequence y[n] will be longer than z[n] by M samples. Whenever firfilt( ) implements
(1), we will find that
length(y) = length(x)+length(b)-1

In the experiments of this lab, you will use firfilt( ) to implement FIR filters and begin to
understand how the filter coefficients define a digital filtering algorithm. In addition, this lab will
introduce examples to show how a filter reacts to different frequency components in the input.

1.1 Frequency Response of FIR Filters

The output or response of a filter for a complex sinusoid input, e/“”, depends on the frequency, @.
Often a filter is described solely by how it affects different frequencies—this is called the frequency
response.

For example, the frequency response of the two-point averaging filter

yln] = 3z[n] + 3xln — 1]

can be found by using a general complex exponential as an input and observing the output or
response.

z[n] = AeJon + ¢ (3)
yln] = %Ae(j&m +¢) 4 %Ae(j&)(n —1)+¢) (4)
~ AUEn+ )1 {1 + e<—jw>} (5)

In (5) there are two terms, the original input, and a term which is a function of &. This second
term is the frequency response and it is commonly denoted by H(e/%).!

H(e®) =1 {1 + e<—j‘f})} (6)

Once the frequency response, H(e/%), has been determined, the effect of the filter on any complex
exponential may be determined by evaluating H(e/?) at the corresponding frequency. The result
will be a complex number whose phase describes the phase shift of the complex sinusoid and whose
magnitude describes the gain applied to the complex sinusoid.

The frequency response of a general FIR linear time-invariant system is

M
H(?) = 3 b2k (7)
k=0

MATLAB has a built-in function for computing the frequency response of a discrete-time LTT system.
It is called freqz( ). The following MATLAB statements show how to use freqz to compute and
plot the magnitude (absolute value) of the frequency response of a two-point averaging system as
a function of @ in the range —7m <o < 7:

bb = [1, -1]; %-- Filter Coefficients

ww = -pi:(pi/100):pi;

H = freqz(bb, 1, ww);

plot (omega, abs(H))

We will always use capital H for the frequency response. For FIR filters of the form of (1), the
second argument of freqz( _, 1, _ ) must always be equal to 1.

'The notation H(e’®) is used in place of (&) for the frequency response because we will eventually connect this
notation with the z-Transform.



2 Warm-up

The instructor verification sheet is included at the end of this lab.

2.1

Frequency Response of the Three-Point Averager

In Chapter 6 we examined filters that average input samples over a certain interval. These filters
are called “running average” filters or “averagers” and they have the following form:

(a)

(b)

1 M

:M-l-lkzz:ox[n_k] (8)

y[n]

Show that the frequency response for the three-point running average operator is given by:

. 2cosw+1 _ .-
H(e¥) = fe Jw (9)

Implement (9) directly in MATLAB. Use a vector that includes 400 samples between —7 and
7 for @. Since the frequency response is a complex-valued quantity, use abs() and angle()
to extract the magnitude and phase of the frequency response for plotting. Plotting the real
and imaginary parts of H(e/%) is not very informative.

The following MATLAB statements will compute H(e/%) numerically and plot its magnitude
and phase versus w.

bb = 1/3*ones(1,3);

ww = -pi:(pi/200):pi;

H = freqz( bb, 1, ww );

subplot(2,1,1)

plot( ww, abs(H) ) %<-- Magnitude

subplot(2,1,2)

plot( ww, angle(H) ) %<-- Phase

xlabel (’NORMALIZED FREQUENCY’)

The function freqz evaluates the frequency response for all frequencies in the vector ww. It
uses the summation in (7), not the formula in (9). The filter coefficients are defined in the
assignment to vector bb. How do your results compare with part (b)?

‘ Instructor Verification (separate page) ‘

3 Lab: FIR Filters

In the following sections we will study how a filter affects sinusoidal inputs, and begin to understand
the performance of the filter as a function of the input frequency. You will see the following;:

1.

2.

3.

that filters of the form of (1) can modify the amplitude and phase of a cosine wave, but they
do not modify the frequency

that for a sum of cosine waves, the system modifies each component independently;

that filters can completely remove one or more components of a sum of cosine waves.



3.1 Filtering Cosine Waves

We will be interested in filtering discrete-time sinusoids of the form
z[n] = Acos(wn + ¢) forn=0,1,2,..., L —1 (10)

The discrete-time frequency for a discrete-time cosine wave, w, always satisfies 0 < @ < 7. If the
discrete-time sinusoid is produced by sampling a continuous-time cosine, the discrete-time frequency
is 0 =wTs =2nf/fs, as discussed in Chapter 4 on Sampling.

3.2 First Difference Filter

Generate L = 50 samples of a discrete-time cosine wave with A = 7, ¢ = 7/3 and © = 0.125m.
Store this signal in the vector xx, so it can also be used in succeeding parts. Now use firfilt( )
to implement the following filter on the signal xx.

y[n] = 5z[n] — 5z[n — 1] (11)

This is called a first-difference filter, but with a gain of five. In MATLAB you must define the vector
bb needed in firfilt.

(a) Note that y[n] and z[n| are not the same length. What is the length of the filtered signal,
and why is it that length? (If you need a hint refer to Section 1.)

(b) Plot the first 50 samples of both waveforms z[n] and y[n] on the same figure, using subplot.
Use the stem function to make a discrete-time signal plot, but label the z-axis to run over
the range 0 < n < 49.

(c) Verify the amplitude and phase of x[n] directly from its plot in the time domain.

(d) From the plot, observe that with the exception of the first sample y[0], the sequence y[n]
seems to be a scaled and shifted cosine wave of the same frequency as the input. Explain
why the first sample is different from the others.

(e) Determine the frequency, amplitude and phase of y[n] directly from the plot. Ignore the first
output point, y[0].

(f) Characterize the filter performance at the input frequency by computing the relative ampli-
tude and phase, i.e., the ratio of output to input amplitudes and the difference of output and
input phases.

(g) In order to compare your measured results to the theory developed in Chapter 6 for this
system, derive the mathematical expression for the output when the input signal is a complex
exponential 2[n] = ¢/*. From this formula determine how much the amplitude and phase
should change for z[n] which has a frequency of @ = 0.125.

3.3 Linearity of the Filter

(a) Now multiply the vector xx from Section 3.2 by two to get xa=2*xx. Generate the signal ya
by filtering xa with the first difference filter given by ( 11). Repeat the relative amplitude
and phase measurements described in the previous section.



(b) Now generate a new input vector xb corresponding to the discrete-time signal
zp[n] = 8 cos(0.257n)

and then filter it through the first difference operator to get y,[n]. Then repeat the relative
amplitude and phase measurements as before. In this case the measurement of phase might
be a bit tricky because there are only a few samples per period. Record how the amplitude,
phase, and frequency of the output yb change compared to the input.

(c) Now form another input signal xc that is the sum of xa and xb. Run xc through the filter
to get yc and then plot yc. Compare yc to a plot of ya + yb. Are they equal 7 Explain any
differences that you observe.

3.4 Time-Invariance of the Filter

Now time-shift the input vector xx by 3 time units to get
zs[n] = 7cos(0.1257(n — 3) + 7/3) forn=0,1,2,3,...

and then filter zs[n] through the first difference operator to get ys[n]. Compare ys to yy, the output
when the input is xx. Find a shift of yy (in number of samples) so that it lines up perfectly with

ys.
3.5 Cascading Two Systems

More complicated systems are often made up from simple building blocks. In the system below a
non-linear system (squaring) is cascaded with an FIR filter:

wln] = (z[n])? Discrete-Time y[n]
Filter -

()2 as in (1)

Squarer

Y

(a) First, assume that the above system is described by the two equations

wln] = (x[n])? (SQUARER)
y[n] = win] — wln — 1] (FIRST DIFFERENCE)

Implement this system using MATLAB. Use as input the same vector xx as in Section 3.2.
In MATLAB the elements of a vector xx can be squared by either the statement xx.*xx, or
xx. 2.

(b) Plot all three waveforms z[n], w[n], and y[n] on the same figure with subplot.

(c) Make a sketch? of the spectrum of the three signals {z[n], w[n], y[n]}. Recall that the
“squarer” is nonlinear and it is therefore possible for the frequency spectrum of wn] to
contain frequency components not present in xz[n].

[43

(d) Observe the time-domain output, w[n|, of the “squarer.” Can you “see” the additional

frequencies introduced by the squaring operation?

2This should, as the term implies, be done by hand. Do not use specgram.



(e)

(f)

Use the linearity results to explain what happens as the signal w[n] then passes through the
first-difference filter.
Hint: track each frequency component through separately.

Now replace the first-difference filter in the above figure with the second-order FIR filter:
y2[n] = w[n] — 2 cos(0.25m)w[n — 1] + win — 2] (12)

Implement the squaring and filtering to produce a new output ys[n]. Determine which fre-
quencies are present in the output signal. Explain how this new filter is able to remove a
frequency component by calculating yo[n] when w[n] = e/ 0.25mn. 3, (12). In addition, sketch
the spectrum of ya[n].



Lab 5

Instructor Verification Sheet
Staple this page to the end of your Lab Report.

Name: Date:

Part 2.1 Find the frequency response of a 3-point averager:

Verified:




