A Brief Introduction to Musical Acoustics

EELE217 R.C. Maher

Harmonic and Inharmonic Sounds

- Musical instruments with simple oscillators
 usually produce periodic waveforms
- Periodic waveforms have a fundamental frequency, f₀, and a *harmonic* spectrum: spectral energy just at frequencies that are integer multiples of f₀.
- These harmonic components are called *harmonics*, *overtones*, or *partials*.
- Some musical instruments produce inharmonic sounds: bells, drums, etc.

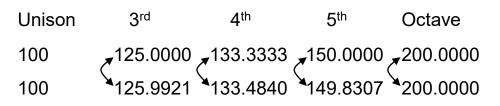
Pitch

- Musical sounds often have a *pitch* that is related to the sound's spectral content
- The pitch of a harmonic sound is usually close to the fundamental frequency of that sound
- Inharmonic sounds may have a perceived pitch, but it is not merely the fundamental of some harmonic series

Organization of Western Music

- Two harmonic sounds with different fundamental frequencies can lead to interesting frequency coincidences among their partials
- When the fundamentals have a low integer ratio relationship, this is a *consonant* interval

Consonant Intervals


Unison	3 rd	4 th	5 th	Octave	
1/1	5/4	4/3	3/2	2/1	
100	125	133.33	150	200	
200	250	266.67	300	400	
300	375	400	450	600	
400	500	533.33	600	800	
500	625	666.67	750	1000	
600	750	800	900	1200	
700	875	933.33	1050	1400	
800	1000	1066.67	1200	1600	
900	1125	1200	1350	1800	
1000	1250	1333.33	1500	2000	
1100	1375	1466.67	1650	2200	
1200	1500	1600	1800	2400	
1300	1625	1733.33	1950	2600	
1400	1750	1866.67	2100	2800	
1500	1875	2000	2250	3000	
1600	2000	2133.33	2400	3200	

Musical Scales and Temperament

- European music is based on the notion of a diatonic pitch *scale*. The scale specifies the allowable musical pitches: 8 scale steps out of 12.
- Problem: if integer frequency ratios are used (*Just* intonation), chords only sound in tune if based on fundamental (*tonic*) pitch. Changing musical "key" is not possible.

Equal Tempered Scale

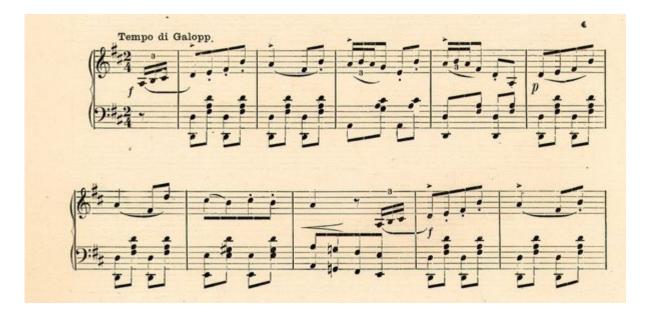
- To solve the musical "key" problem, keyboard instruments now use *equaltempered* tuning.
- Note frequencies are distributed uniformly in a logarithmic span:
 - $f_n = f_0 \times 2^{n/12}$
- Just vs. equal tempered tuning:

Tuning Example

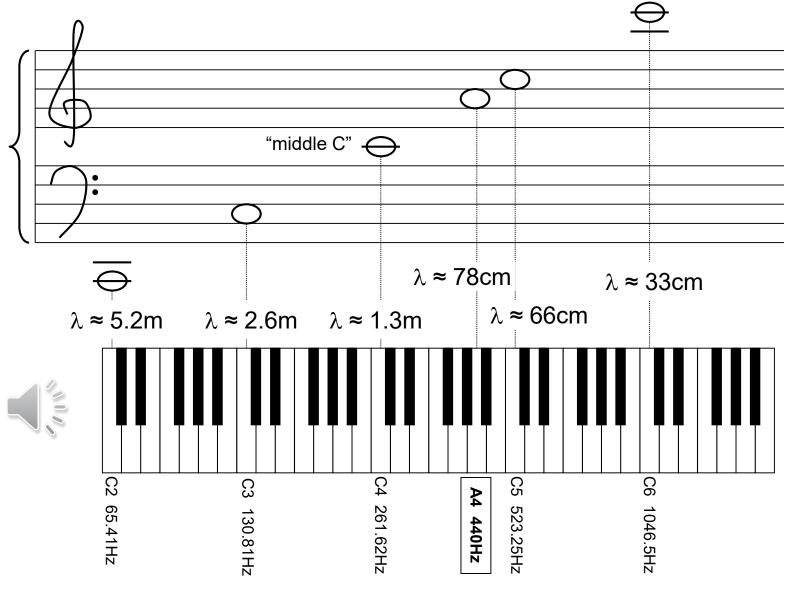
Unison	3/2 (5 th)	Octave	ET 3/2 (et 5 th)	deltf
220				
	330		329.63	0.37
440		440		
660	660		659.26	0.74
880		880		
	990		988.88	1.12
1100				
1320	1320	1320	1318.51	1.49
1540				
	1650		1648.14	1.86
1760		1760		
1980	1980		1977.77	2.23
2200		2200		
	2310		2307.39	2.61
2420				
2640	2640	2640	2637.02	2.98

Equal Temperament vs. Just

	3rd		4th		5th		octave
1/1	5/4	1.259921	4/3	1.33484	3/2	1.498307	2/1
100	125	125.99	133.33	133.48	150	149.83	200
200	250	251.98	266.67	266.97	300	299.66	400
300	375	377.98	400.00	400.45	450	449.49	600
400	500	503.97	533.33	533.94	600	599.32	800
500	625	629.96	666.67	667.42	750	749.15	1000
600	750	755.95	800.00	800.90	900	898.98	1200
700	875	881.94	933.33	934.39	1050	1048.81	1400
800	1000	1007.94	1066.67	1067.87	1200	1198.65	1600
900	1125	1133.93	1200.00	1201.36	1350	1348.48	1800
1000	1250	1259.92	1333.33	1334.84	1500	1498.31	2000
1100	1375	1385.91	1466.67	1468.32	1650	1648.14	2200
1200	1500	1511.91	1600.00	1601.81	1800	1797.97	2400
1300	1625	1637.90	1733.33	1735.29	1950	1947.80	2600
1400	1750	1763.89	1866.67	1868.78	2100	2097.63	2800
1500	1875	1889.88	2000.00	2002.26	2250	2247.46	3000
1600	2000	2015.87	2133.33	2135.74	2400	2397.29	3200


Rhythm

- Beats per minute
- Beats per measure (time signature)
- Duration of musical notes specified in fractions:


whole, half, quarter, eighth, sixteenth, 32nd

Musical Notation

- Notation specifies pitches, durations, and time evolution
- Representation is like a spectrogram: frequency vs. time

Standard Tuning Frequencies

12

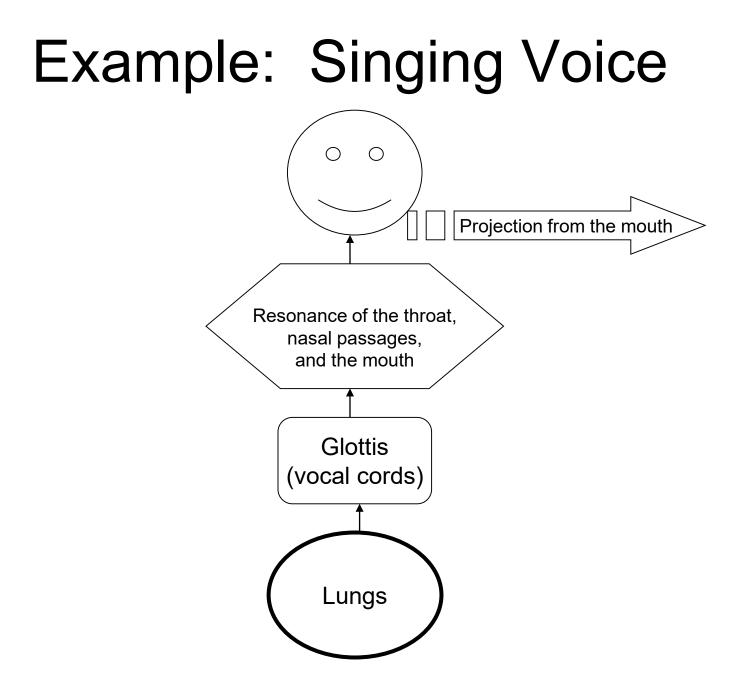
Musical Timbre

- The relative spectral energy at different frequencies is perceived as a distinct tone color, or timbre (pronounced as either tam--burr or tim-burr)
- Timbre: The combination of qualities of a sound that distinguishes it from other sounds of the same pitch and volume

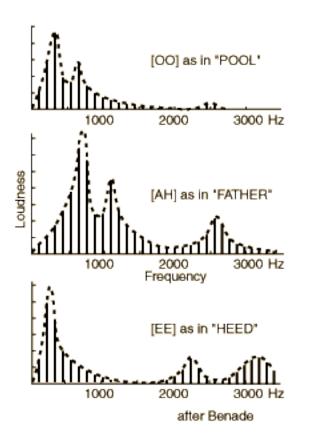
Musical Instruments

- Almost any object can be considered a musical instrument
- Most *conventional* musical instruments have
 - an excitation source
 - a vibrating element
 - a resonant body
 - a means of *coupling* the vibrations so that they radiate into the air as sound waves

Musical Instruments (cont.)


- The excitation is a motive force
- The vibrating element usually creates many harmonics
- The resonant body emphasizes some frequencies and deemphasizes others
- The coupling means takes energy from the vibrating element and "loses" it (radiates) into an acoustical wave through the air

Example: String Instrument


Bow or pluck excitation.

<u>Vibrating string</u> couples energy to the hollow wood body (<u>resonator</u>).

Vibrating body couples sound into the air (<u>radiation</u>).

Simulation: Excitation and Filter

 Signal rich in harmonics (a "buzz") with spectral shaping

 Does it sound like singing? Does the vibrato help?