EELE 250: Circuits, Devices, and Motors

Lecture 9

Assignment Reminder

- Read 4.1 4.3 AND 5.1 5.4
- Practice problems:
 - P3.60, 3.64, 3.72
 - P4.3, 4.8, 4.9, 4.23, 4.37, 4.38
- D2L Quiz #4 by 11AM on Wednesday 25 Sept. Then Quiz #5 will be posted this week (due by 11AM on Monday 30 Sept.
- REMINDER: No lab meetings this week.

Inductors

 An inductor stores energy in a magnetic field. Current through the coil acts like an electromagnet. A typical inductor has a coil of wire around an iron core.

(a) Toroidal inductor

- (c) Inductor with a laminated iron core
- (b) Coil with an iron-oxide slug that can be screwed in or out to adjust the inductance

Inductors (cont.)

 Rather than storing charge like a capacitor, think of an inductor as having "current inertia"

v(t) $v(t) = L \frac{di}{dt}$

Inductance

 Inductance is measured in *Henrys* [volt seconds per amp]

$$v(t) = L \frac{di}{dt}$$
$$i(t) = \frac{1}{L} \int_{t_0}^t v(t) dt + i(t_0)$$

Parallel and Series

 Inductors in parallel have the same voltage but different currents, so they add reciprocally (like resistors).

(b) Parallel inductances

Parallel and Series (cont.)

 Inductors connected in series share the same current, but have different voltages, so they add directly (like resistors).

Important Rules of Thumb

- It takes time to change the voltage on a capacitor, because we have to wait while enough charge is delivered or removed by the current
- It takes time to change the current through an inductor, because the magnetic field must be increased or decreased
- Forcing a capacitor to change voltage quickly would require a BIG CURRENT: dv/dt = i·(1/C)
- Forcing an inductor to change current quickly would require a BIG VOLTAGE: di/dt = v ·(1/L)

Summary and Review

- Inductors store energy in a magnetic field
- v = L di/dt
- i= (1/L) integral v dt
- Inductors in parallel add together reciprocally, like resistors in parallel.
- Inductors in series add *directly*, again like resistors in series.