Scope:

- Study the steady-state (DC) and transient responses of RL and RC Circuits.
- Study the transient response RL and RC Circuits.
- Study time constants.
- Use signal generator.
- Use oscilloscope.

Home Preparation:

- Review Hambley Chapters 3 to 4.4
- Recall: $\mathrm{V}_{\mathrm{c}}(t)=\mathrm{V}_{\infty}+\left(\mathrm{V}_{0}-\mathrm{V}_{\infty}\right) \cdot \exp (-t / \mathrm{RC})$
- For the circuit shown on Fig. 4.1, switch S1 has been open for a long time and switch S 2 has been closed for a long time. At time $\mathrm{t}=0$ seconds S1 closes and S2 opens. Determine the equation for the voltage across the capacitor in Fig. 4.1 for $t \geq 0$ seconds.

Fig. 4.1

Fig. 4.2

- Recall: $\mathrm{i}_{\mathrm{L}}(t)=\mathrm{I}_{\infty}+\left(\mathrm{I}_{0}-\mathrm{I}_{\infty}\right) \cdot \exp (-t /(\mathrm{L} / \mathrm{R}))$
- For the circuit shown on Fig. 4.3, switch S1 has been open for a long time and switch S 2 has been closed for a long time. At time $t=0$ seconds S 1 closes and S2 opens. Determine equations for the voltage across the resister and the current through the inductor in Fig. 4.3 for $\mathrm{t} \geq 0$ seconds.
- For the circuit shown on Fig. 4.4, switch S1 has been closed for a long time and switch S2 has been open for a long time. At time $t=0$ seconds S1 opens and S2 closes. Determine equations for the voltage across the resister and the current through the inductor in Fig. 4.4 for $\mathrm{t} \geq 0$ seconds.

Fig. 4.3

Fig. 4.4

Laboratory experiments:

1) Breadboard the circuit shown in Figure 4.5.

- Measure the current through the inductor.
- Measure the voltage across the resistor.
- Find the dc resistance of the inductor using the DMM. (Actual inductors have a small but non-zero resistance at dc.)
- Verify that KVL is satisfied for this dc circuit.

2) Substitute the $D C$ source in experiment (1) with a square wave signal, from the signal generator, with $\mathrm{V}_{\mathrm{MAX}}=$ $5 \mathrm{~V}, \mathrm{~V}_{\text {MIN }}=0 \mathrm{~V}$, and a frequency of $\mathbf{1 0} \mathbf{~ k H z}$, as shown in Fig. 4.6. (Set the square signal to 5 volts peak-to-peak and adjust the dc offset of the signal until $\mathrm{V}_{\text {MIN }}$ is achieved.)

- Connect Channel 1 (set to dc coupling) of the oscilloscope to record the voltage across the source and Channel 2 to record the voltage across the resister. Use the MATH function of the o-scope set to Ch1 - Ch2 to view the voltage drop across the inductor.
- Carefully make a detailed sketch in your notebook of all three voltage signals.
- Use the recording feature of the oscilloscope to record the trace of both signals. Print and paste the graphs in your notebook.
- From the o-scope display, determine the time constant for this circuit. Detail the procedure used to find the time constant in your notebook.

Fig. 4.5

Fig. 4.6

- Present the results of these experiments. Highlight the important features. Comment on the results.

3) Breadboard the circuit shown in Figure 4.7

- Measure the voltage across the capacitor.
- Measure the current through the resistor.

4) Substitute the DC source in experiment (3) with a square wave, with $\mathrm{V}_{\text {MAX }}=5 \mathrm{~V}, \mathrm{~V}_{\text {MIN }}=0 \mathrm{~V}$, and a frequency of 50 Hz , as shown in Fig. 4.8.

- Connect Channel 1 of the oscilloscope to record the voltage across the source and the Channel 2 to record the voltage across the capacitor. Use the MATH function of the o-scope set to Ch1 - Ch2 to view the voltage drop across the resistor.
- Sketch in your note book all three voltage signals.
- Use the recording feature of the oscilloscope to record the trace of both signals. Print and paste the graphs in your notebook.
- From the o-scope display, determine the time constant for this circuit.
- Comment on the results.

Fig. 4.8

In these experiments you have seen responses (signals) which change exponentially from an initial to a final value. Can you think of a mechanical system where you will observe a similar response?

