\Rightarrow This lab experiment will be performed in EPS room 119.

 Scope: Use the network analyzer to measure AC voltages, current and power. 	 Understand standard terminal markings. Determine transformer polarity marks. Understand transformer connections. 				
Attention X & DANGER & In this lab experiment you will use voltage levels that can be dangerous. Follow ALL safety guidelines explained by your TA. The standard precautions include:	 Connect the apparatus without power connected: have the instructor check your connections BEFORE applying power. Be careful not to touch "live" terminals. Make sure the power source is off BEFORE changing connections. Absolutely no horseplay in the lab. Eliminate distractions: focus on your work at the lab bench. 				
No Pre-Lab assignment this week	Special Note: Your lab TA must sign- off on each step before you proceed.				

1) In the space provided below, sketch the circuit diagram for testing a single-phase 117/25 V transformer under load. Show the connections for a power analyzer on the high voltage (117 V_{rms}) side and one on the low voltage (25 V_{rms}) side, between the transformer and the load. Use a general impedance Z_L to indicate the load.

Single-Phase Transformer Test Circuit. TA approval of sketch:

Г

2)	Assemble the approved circuit diagram for the transformer load test but do not				
	turn on the power. Have your assembled circuit approved by your lab TA.	TA approva	al of circuit:		
3)	Examine the transformer's nameplate and identify the rated current on its high-voltage and low-voltage sides	I _{rated} on high voltage side =			
		I _{rated} on lo	w voltage sid	le =	_
4)	Carefully connect the high-voltage side of the transformer to the 120 V_{rms} AC source.				
5)	Make the measurements required to	Always ren	nember:		
	complete Table 10.1 for the different load resistance values given, and calculate the transformer efficiency. <i>Make sure in</i> <i>each case you will not exceed the</i> <i>transformer rated currents.</i>	<i>Turn OFF the power before changing connections.</i>			g
	Plot (on a separate sheet) the transformer efficiency versus load current, using measured data.				
Т	able 10.1: Single-Phase Transformer	with Load N	leasuremer	nts and Cal	culations
	$(\Omega) V_{\text{load}}(V) I_{\text{load}}(A) P_{\text{load}}(W)$	Vin (V)	lin (A)	Pin (W)	Eff (%)

$R_{load}(\Omega)$	V _{load} (V)	I _{load} (A)	P _{load} (W)	V _{in} (V)	I _{in} (A)	P _{in} (W)	Eff (%)
∞ (open)							
100							
50							
100 50							
25							
50 25							
25 25							

Explain how the measurements from step (5) can be used to determine the dot convention of a transformer.

6) In the space provided to the right, sketch the circuit diagram for connecting the transformer primary and secondary windings to obtain the voltage transformation 117V/92V.

Single-Phase 117V/92V Test Circuit.

TA approval of sketch:

7) In the space provided to the right, sketch the circuit diagram for connecting the transformer primary and secondary windings to obtain the voltage transformation 117V/142V.

Single-Phase 117V/142V Test Circuit.

TA approval of sketch: _____