EELE 250: Circuits, Devices, and Motors

Lecture 10

Assignment Reminder

- Read 4.1 4.3 AND 5.1 5.4
- Practice problems:
 - P3.46, P3.54, P3.62, P3.63
 - P4.3, P4.5, P4.33, P4.39
- D2L Quiz #5 by 11AM on Monday 3 Oct.
- REMINDER: Work on your Lab #3 formal report. The reports are due at lab time during the week of Oct. 3.

Transients with C and L

- Transient analysis: it takes time to change voltage on a capacitor or change current in an inductor
- Analysis uses node voltage or mesh current analysis
- Typically need to consider the circuit just before t=0 (t<0 and after t=0 (t=0+)
- Cannot instantly change inductor current
- Cannot instantly change capacitor voltage

Discharging a capacitor

- Consider a capacitor, C, charged to some initial voltage, v_i
- At t=0, a resistance R is connected across the capacitor: current will start to flow, because V_i across R (Ohm's Law).

Capacitance charged to V_i prior to t = 0

Discharge current

• Current in capacitor: $-C \frac{dv}{dt}$

Current in resistor: v/R

• Node equation: $C \frac{dv}{dt} + \frac{v}{R} = 0$ • Or in standard form: $\frac{dv_c(t)}{dt} + \left(\frac{1}{RC}\right)v_c(t) = 0$

Discharge current (cont.)

$$\frac{dv_c(t)}{dt} + \left(\frac{1}{RC}\right)v_c(t) = 0$$

- Solution of differential equation is an exponential: $v_c(t) = Ke^{st}$ So $sKe^{st} + \left(\frac{1}{RC}\right)Ke^{st} = 0$
- Using initial conditions: $v_c(0) = V_i$ $s = -\frac{1}{RC}$ and $K = V_i$

Discharge Current (cont.)

- In exponent, $s \cdot t$ must be dimensionless, so $s = -\frac{1}{RC}$ implies *RC* has units of *seconds*.
- *RC* is called the *time constant*.

 The bigger the RC time constant, the slower the discharge time

Charging a capacitor

 Node equation for RC switched in series with voltage source:

•
$$C \frac{dv_c(t)}{dt} + \frac{v_c(t) - V_s}{R} = 0$$

 $v_c(t) = K_1 + K_2 e^{st}$

• General solution:

$$v_c(t) = v_{\infty} + (v_0 - v_{\infty})e^{-t/RC}$$

 $\tau = \text{time constant} = RC$

Inductor transient analysis

- Procedure similar to capacitor analysis, except with differential equation involving inductor voltage in terms of inductor current
- General solution:

$$i_L(t) = i_{\infty} + (i_0 - i_{\infty})e^{-\frac{t}{L/R}}$$
$$\tau = \text{time constant} = \frac{L}{R}$$

General Procedure for RL and RC

- Identify initial conditions:
 *i*₀ in inductor; *v*₀ for capacitor
- Identify final conditions: i_{∞} for inductor; v_{∞} for capacitor
- Identify equivalent resistance (Thevenin) "seen" by inductor or capacitor.
- Compute time constant: L/R_{eq} for inductor; $R_{eq} \cdot C$ for capacitor
- Then apply to general equation!

Summary and Review

- Capacitor and inductor transient analysis uses the same KVL and KCL principles we learned in Chapter 2, except with C dV/dt and L di/dt included along with Ohm's Law.
- Standard solution form: $K_1 + K_2 e^{st}$

• General solutions: $v_{c}(t) = v_{\infty} + (v_{0} - v_{\infty})e^{-t/RC}$ $i_{L}(t) = i_{\infty} + (i_{0} - i_{\infty})e^{-t/(L/R)}$