EELE 250: Circuits, Devices, and Motors

Lecture 11

Assignment Reminder

- Read 4.1 4.3 AND 5.1 5.4
- Practice problems:
 - P3.46, P3.54, P3.62, P3.63
 - P4.3, P4.5, P4.33, P4.39
- D2L Quiz #5 by 11AM on Monday 3 Oct.
- REMINDER: Work on your Lab #3 formal report. The reports are due at lab time during the week of Oct. 3. Lab #4 will be performed this week—be sure to do the pre-lab assignment calculations!

Sinusoidal Current and Voltage

- $v(t) = V_m \cos(\omega t + \theta)$
- $\omega = 2 \pi f$ [radians / sec]
- *f* = frequency [cycles / sec] or [Hz]
- T = 1 / *f* = period [sec]

• Root mean square (RMS) concept

Sinusoids

- Which is the correct relationship between sine and cosine?
 - A. $cos(\theta) = sin(\theta + \pi/2)$
 - B. $cos(\theta) = sin(\theta \pi/2)$
 - C. $cos(\theta) = sin(\theta + \pi)$
 - D. $cos(\theta) = sin(\theta \pi)$
 - E. $cos(\theta) = -sin(\theta)$
- (answer is A)

Sinusoids

• Which is the correct relationship between sine and cosine?

A.
$$sin(\theta) = -cos(\theta)$$

- B. $sin(\theta) = cos(\theta + \pi/2)$
- C. $sin(\theta) = cos(\theta \pi)$
- D. $sin(\theta) = cos(\theta \pi/2)$
- E. $sin(\theta) = cos(\theta + \pi)$
- (answer is D)

Phasors

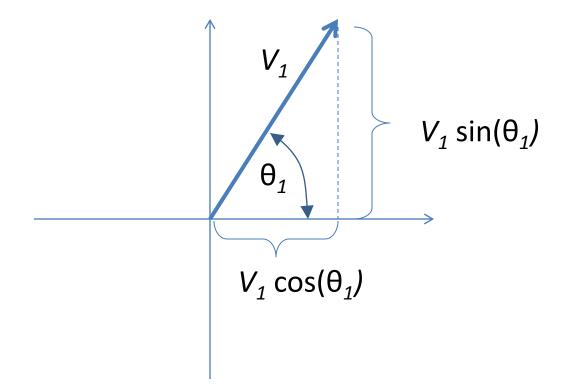
- Represent a sinusoid v(t) = V₁ cos(ωt + θ₁) as a vector of length V₁ and angle θ₁ with respect to the real axis
- This vector is equivalent to a complex number real part is V₁ cos(θ₁)

and

<u>imaginary part</u> is $V_1 \sin(\theta_1)$

• (Polar form vs. rectangular form)

Phasors (cont.)



Phasors (cont.)

 Circuits with sinusoidal signals often result in KVL or KCL expressions like:

 $V_1 \cos(\omega t + \theta_1) + V_2 \cos(\omega t + \theta_2) + V_3 \cos(\omega t + \theta_3)$

It is a pain to add these signals via trigonometric identities!

Fortunately, it is easier to add using phasors: add the vectors as complex numbers.

Phasors (cont.)

 $V_1 \cos(\omega t + \theta_1) + V_2 \cos(\omega t + \theta_2) + V_3 \cos(\omega t + \theta_3)$

Phasors: $V_1 \angle \theta_1 + V_2 \angle \theta_2 + V_3 \angle \theta_3$ Real parts: $V_1 \cos(\theta_1) + V_2 \cos(\theta_2) + V_3 \cos(\theta_3)$ Imag parts: $V_1 \sin(\theta_1) + V_2 \sin(\theta_2) + V_3 \sin(\theta_3)$ Sum phasor:

sqrt(real² + imag²) ∠atan(imag/real)

Complex impedances

- Inductor: v(t) = L di/dt
- If $i(t) = I_m \cos(\omega t)$, then $v(t) = -\omega I_m \operatorname{L} \sin(\omega t)$ \Rightarrow note that $-\sin(\omega t) = \cos(\omega t + 90^\circ)$
- As phasors:

$$I = I_m \angle 0^\circ$$
 $V = \omega I_m L \angle 90^\circ$

which means:

$$V = (\omega L \angle 90^\circ) \cdot (I)$$

Note: $\omega L \angle 90^{\circ}$ is the complex number $j \omega L$

Complex Impedances (cont.)

- $V = (\omega L \angle 90^\circ) \cdot (I) = (j \omega L) \cdot (I)$
- Ohm's Law: $V = I \cdot R$, can be generalized to

$V = I \cdot Z$, where Z is the *impedance*.

- **Z** can be a real or a complex number
 - Impedance of a resistor: $\mathbf{Z} = \mathbf{R}$
 - Impedance of an inductor: $\mathbf{Z} = \mathbf{j} \boldsymbol{\omega} \mathbf{L}$
 - Impedance of a capacitor: $\mathbf{Z} = 1/(j \omega C)$

Complex Impedances (cont.)

• NOTE that the impedance of an inductor or capacitor depends upon the sinusoidal frequency, ω 1

$$Z_L = j\omega L \qquad \qquad Z_C = \frac{1}{j\omega C}$$

- Impedance magnitude of inductor goes up as frequency increases
- Impedance magnitude of capacitor goes *down* as frequency increases

Summary and Review

- Represent a group of sinusoids with the same frequency as *phasors*
- Add phasors by interpreting them as complex numbers
- Generalize Ohm's Law to be V = I Z
- Impedance of a resistor: **Z** = R
- Impedance of an inductor: $\mathbf{Z} = \mathbf{j} \boldsymbol{\omega} \mathbf{L}$
- Impedance of a capacitor: $\mathbf{Z} = 1/(j \omega C)$