EELE 250: Circuits, Devices, and Motors

Lecture 14

Assignment Reminder

- Read 5.6, 6.2 AND 10.1-10.6
- Practice problems:
- P5.65, P5.67, P5.81, P5.91
- P6.24, P6.25
- P10.8, P10.14, P10.36
- D2L Quiz \#7 by 11AM on Monday 17 Oct.
- Lab \#5 this week-be sure to do the pre-lab calculations!
- Exam \#2: in class on Monday 17 Oct.

Review: Thévenin and Norton Circuits

Thévenin and Norton (cont.)

- Thévenin voltage is the open circuit voltage
- Norton current is the short circuit current
- The equivalent resistance is $\mathrm{V}_{\mathrm{oc}} / I_{\mathrm{sc}}$
- We can also find the equivalent resistance by turning "off" the independent voltage and current sources and finding the equivalent resistance of the resulting circuit

Generalize to Impedances...

- We can extend the Thévenin and Norton equivalent circuits to RLC circuits and AC steady-state analysis
- Same principles apply: find open-circuit voltage and short-circuit current
- Can also determine impedance by finding equivalent impedance with independent sources turned "off"

Thévenin example

Plan:

- Find open-circuit voltage
- Find impedance

Thévenin example (cont.)

Open circuit voltage:

- NOTE that no current upper-right branch, since o.c.
- This means $\mathrm{V}_{\text {oc }}=\mathrm{V}$ across 100Ω resistor
- Current in 100Ω resistor is $\mathrm{V}_{\mathrm{s}} /(\mathrm{j} 100+100)$ $I_{s}=100 \angle 0^{\circ} / 141 \angle 45^{\circ}=0.707 \angle-45^{\circ}$
- So $\mathrm{V}_{\mathrm{oc}}=100 \mathrm{I}_{\mathrm{s}}=70.7 \angle-45^{\circ}$

Thévenin example (cont.)

Equivalent impedance:

- Turn "off" V_{s} (zero volts means short circuit)
- $Z_{t}=50-j 25+(100| | j 100)$
$=50-\mathrm{j} 25+\mathrm{j} 10000 /(100+\mathrm{j} 100)$
Note $10000 \angle 90^{\circ} / 141 \angle 45^{\circ}=70.92 \angle 45^{\circ}$
$=50-\mathrm{j} 25+50.15+\mathrm{j} 50.15=100.15+\mathrm{j} 25.15$

Thévenin example (cont.)

- $\mathrm{V}_{\mathrm{t}}=70.7 \angle-45^{\circ}$ volts
- $Z_{t}=100+j 25=103 \angle 14^{\circ} \Omega$
- $\mathrm{I}_{\mathrm{n}}=\mathrm{V}_{\mathrm{t}} / \mathrm{Z}_{\mathrm{t}}=70.7 \angle-45^{\circ} / 103 \angle 14^{\circ}$
$=0.686 \angle-59^{\circ} \mathrm{amps}$

Maximum Power Transfer

- To maximize the power delivered to a load impedance:

$$
Z_{\text {load }}=Z_{t}^{*}
$$

The load is matched to the complex conjugate impedance

- To maximize the power delivered to a resistive load:

$$
R_{\text {load }}=\left|Z_{t}\right|
$$

The resistive load is matched to the magnitude impedance

Summary and Review

- Thévenin and Norton concept applies to impedances and steady-state AC analysis
- Apply calculations and simplifications using phasor and complex rectangular arithmetic
- Maximize power transfer with a matched load, either $\mathbf{Z}_{\text {load }}=\mathbf{Z}_{\mathrm{t}}{ }^{*}$ if complex impedance, or $R_{\text {load }}=\left|Z_{t}\right|$ if resistive load.

