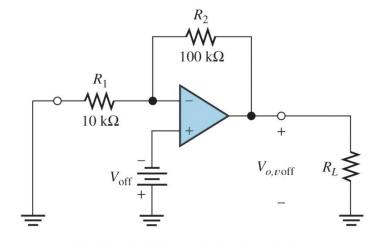
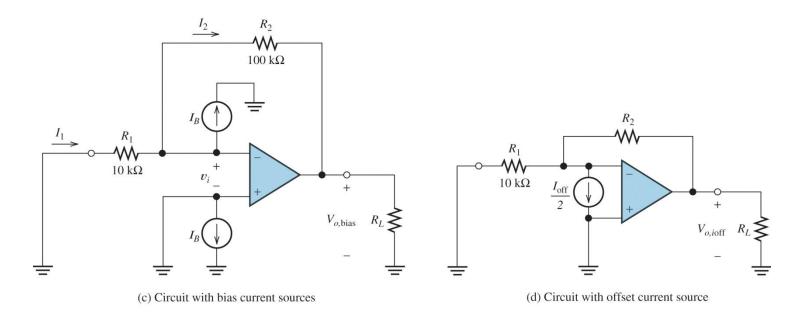

EELE 250: Circuits, Devices, and Motors


Op Amps (cont.)

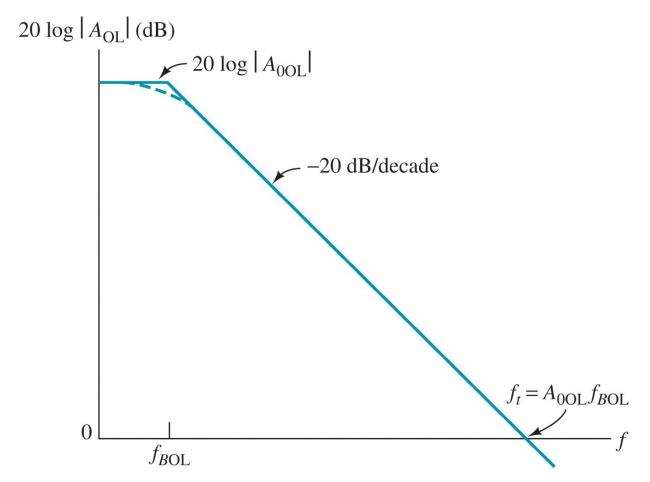
Assignment Reminder

- Read 14.4 14.7
- Practice Problems:
 - P14.18, P14.20, P14.21, P14.23, P14.36, P14.38
- Lab #6 this week. Keep your circuits on your breadboard for use again next week in Lab #7.
- D2L Quiz #8 by 11AM on Monday 31 Oct.
- Exam #3: Wednesday 9 Nov.

Modeling real op amps



(b) Circuit with $v_{in} = 0$ showing the input offset voltage source


Input offset voltage: output may not be exactly zero volts even if input is zero

Modeling real op amps (cont.)

Input bias and offset currents: current at each input is not exactly zero, and not exactly balanced.

Frequency Response

Open loop gain decreases as frequency increases, so assumption that A_{OL} is huge does not hold at higher frequencies.

Output limitations

- Output voltage swing -- clipping
- Output current clipping or droop
- Slew rate: limit on dV/dt -- distortion

Typical specs

	741	OP-27	LF353
Input bias current	1.5 uA	35 nA	50 pA
Input offset voltage	6.5 mV	25 uV	5 mV
Gain x BW	1 MHz	8 MHz	4 MHz
Slew Rate	0.5 V/usec	2.8 V/usec	13 V/usec
Max output current	25 mA	30 mA	25 mA
Input noise	20	3.8	20
Price	\$ 0.88	\$ 3.00	\$ 0.66