EELE 250: Circuits, Devices, and Motors

Op Amps (cont.)

Assignment Reminder

- Read 14.7 and 14.9; also read 5.7 (3 phase)
- Practice Problems:
- P14.74, P14.75
- Lab \#7 this week. A formal lab report for Lab \#7 is due at your lab time Nov. 14-18.
- Exam \#3: Wednesday, November 9, in class. The coverage will be amplifier concepts and operational amplifier circuit analysis.

Clicker quiz

(a) $V_{o}=-R_{L} V_{\text {in }}$
(b) $V_{o}=-V_{i n}$
(c) $V_{0}=-\left(R_{2} / R_{1}\right) V_{\text {in }}$
(d) $V_{0}=-\left(R_{1} / R_{2}\right) V_{\text {in }}$
(e) $V_{0}=\left(1+R_{2} / R_{1}\right) V_{\text {in }}$

Clicker quiz

(a) $V_{o}=-R_{L} V_{\text {in }}$
(b) $V_{o}=-V_{i n}$
(c) $V_{0}=-\left(R_{2} / R_{1}\right) V_{\text {in }}$
(d) $V_{0}=-\left(R_{1} / R_{2}\right) V_{\text {in }}$
(e) $V_{o}=\left(1+R_{2} / R_{1}\right) V_{\text {in }}$

Clicker quiz

Assuming the ideal op amp model, what is i_{i} ?
(a) $I_{i}=V_{o} / R_{L}$
(b) $I_{i}=V_{1} / R_{1}$
(c) $I_{i}=V_{i n} / R_{1}$
(d) $I_{i}=0$

Clicker quiz

Assuming the ideal op amp model, what is v_{i} ?
(a) $v_{i}=0$
(b) $v_{i}=v_{\text {in }}$
(c) $v_{i}=-v_{\text {in }}$
(d) $v_{i}=v_{o}$

Clicker quiz

Assuming the ideal op amp model, what is v_{1} ?
(a) $v_{1}=v_{\text {in }}\left(R_{1} /\left(R_{1}+R_{2}\right)\right.$
(b) $v_{1}=v_{\text {in }}$
(c) $v_{1}=-v_{\text {in }}$
(d) $v_{1}=v_{0}$

Design with Op Amps

- Typical op amp circuit design involves selecting external resistors to achieve a particular voltage gain, current gain, etc.
- Design involves selecting the best solution from several possible choices. This usually entails tradeoffs and compromises.
- Often choose basic circuits as building blocks:
- Inverting and non-inverting configuration
- Voltage follower
- Summer

Design Example

- We would like to create a control voltage to steer a solar array to point at the sun.
- Two optical sensors: sensors produce a current proportional to how strongly they are illuminated.
- If the left sensor is illuminated more than the right, we need a proportional POSITIVE voltage.
- If the right sensor is illuminated more than the left, we need a proportional NEGATIVE voltage.

Design Example (cont.)

Design Example (cont.)

- Interpretation: We want a circuit that will create a voltage proportional to ($\left.l_{\text {left }}-I_{\text {right }}\right)$
- One idea: convert the currents into voltages, subtract them, and then amplify the result
- Current to voltage converter?
- Summer?

