EELE 250: Circuits, Devices, and Motors

Balanced three-phase circuits

Assignment Reminder

- Read 5.7 AND 15.1-15.2
- Exam \#3: Wednesday, November 9, in class. The coverage will be amplifier concepts and operational amplifier circuit analysis.
- No lab, quiz, or practice problems this week.
- Lab \#7 formal report due next week.
- Veterans Day holiday on Friday: no MSU classes; offices closed.

Electrical Power Distribution

- In the United States and most of the world, electrical power is distributed as sinusoidal alternating voltage and current (AC), with three separate conductors and phases.
- The three sinusoidal phases are spaced by 120°

$$
\begin{array}{ll}
\mathrm{v}_{\mathrm{a}}(\mathrm{t})=\mathrm{V} \cos (\omega \mathrm{t}) & \mathrm{V}_{\mathrm{a}}=\mathrm{V} \angle 0 \\
\mathrm{v}_{\mathrm{b}}(\mathrm{t})=\mathrm{V} \cos \left(\omega \mathrm{t}-120^{\circ}\right) & \mathrm{V}_{\mathrm{b}}=\mathrm{V} \angle-120 \\
\mathrm{v}_{\mathrm{c}}(\mathrm{t})=\mathrm{V} \cos \left(\omega \mathrm{t}+120^{\circ}\right) & \mathrm{V}_{\mathrm{c}}=\mathrm{V} \angle 120
\end{array}
$$

Three-phase source

(c) Phasor diagram

Three-phase wye-wye connection

Three-phase power

- With a single phase, the power fluctuates with time: $\cos ^{2}(\omega \mathrm{t})$
- With three-phase connection, the power delivered by each phase is offset in time such that the total power is constant with time
- Three-phase motors receive constant power, and can therefore deliver constant torque
- Also, fewer conductors are needed to deliver three balanced phases compared to three separate phases.

