P3.46. Starting at t = 0, a constant 12-V voltage source is applied to a 2-H inductor. Assume an initial current of zero for the inductor. Determine the current, power, and stored energy at $t_1 = 1$ s.

P3.46
$$i_{L}(t_{1}) = \frac{1}{L} \int_{0}^{t_{1}} v_{L}(t) dt + i_{L}(0)$$
 $i_{L}(1) = \frac{1}{2} \int_{0}^{1} 12 dt + 0 = 6 A$

$$p(1) = v_{L}(1)i_{L}(1) = 72 W \qquad w(1) = \frac{1}{2} Li_{L}^{2}(1) = 36 J$$

P3.54. Before t = 0, the current in a 5-H inductance is zero. Starting at t = 0, the current is increased linearly with time to 15 A in 3 s. Then, the current remains constant at 15 A. Sketch the voltage, current, power, and stored energy to scale versus time.

P3.54

P3.62. Find the equivalent inductance for each of the series and parallel combinations shown in Figure P3.62.

Figure P3.62

P3.62 (a) $L_{eq} = 5 H$.

(b) The 6 H inductor and 3 H inductor have no effect because they are in parallel with a short circuit. Thus, $L_{eq}=7\,\mathrm{H}$.

- **P3.63.** Suppose that we need to combine (in series or in parallel) an unknown inductance L with a second inductance of 4 H to attain an equivalent inductance of 7 H. Should L be placed in series or in parallel with the original inductance? What value is required for L?
- **P3.63** We need to place L = 3 H in series with the original 4-H inductance.

*P4.3. The initial voltage across the capacitor shown in Figure P4.3 is $v_C(0+) = -10 \text{ V}$. Find an

expression for the voltage across the capacitor as a function of time. Also, determine the

time t_0 at which the voltage crosses zero.

P4.3* The solution is of the form of Equation 4.17:

$$v_c(t) = V_s + K_2 \exp(-t/RC) = 10 + K_2 \exp(-t/(2 \times 10^{-3}))$$

in which K_2 is a constant to be determined. At t=0+ , we have

$$v_{c}(0+) = -10 = 10 + K_{2}$$

Solving, we find that $K_2 = -20$ and the solution is

$$v_c(t) = 10 - 20 \exp(-t/(2 \times 10^{-3})) \text{ V}$$

Setting the voltage equal to zero at time t_0 and solving we obtain:

$$0 = 10 - 20 \exp(-t_0/(2 \times 10^{-3}))$$

$$1/2 = \exp(-t_0/(2 \times 10^{-3}))$$

$$-\ln(2) = -t_0/(2\times10^{-3})$$

$$t_0 = 2\ln(2) = 1.386 \text{ ms}$$

*P4.5. At t = 0, a charged $10-\mu F$ capacitance is connected to a voltmeter, as shown in Figure P4.5. The meter can be modeled as a resistance. At t = 0, the meter reads 50 V. At t = 30 s,

the reading is 25 V. Find the resistance of the voltmeter.

Figure P4.5

P4.5* This is a case of a capacitance discharging through a resistance. The voltage is given by Equation 4.8:

$$v_{\mathcal{C}}(t) = V_{i} \exp(-t/R\mathcal{C})$$

At t=0, we have $v_{\mathcal{C}}(0)=50=V_i$. At t=30, we have $v_{\mathcal{C}}(30)=25$. Thus, we can write $25=50\exp(-30/\mathcal{RC})$. Dividing by 50 and taking the natural logarithm of both sides, we obtain $-\ln(2)=-30/\mathcal{RC}$. Rearranging, we have $\mathcal{R}=\frac{30}{\mathcal{C}\ln(2)}=4.328\,\mathrm{M}\Omega$.

- ***P4.33.** The circuit shown in Figure P4.33 is operating in steady state with the switch closed prior to t = 0. Find i(t) for t < 0 and for $t \ge 0$.
- **P4.33*** In steady state with the switch closed, we have i(t) = 0 for t < 0 because the closed switch shorts the source.

In steady state with the switch open, the inductance acts as a short circuit and the current becomes $i(\infty) = 1 A$. The current is of the form $i(t) = K_1 + K_2 \exp(-Rt/L)$ for $t \ge 0$

in which $R=20\,\Omega$, because that is the Thévenin resistance seen looking back from the terminals of the inductance with the switch open. Also, we have

$$i(0 +) = i(0 -) = 0 = K_1 + K_2$$

 $i(\infty) = 1 = K_1$

Thus, $K_{\rm 2}=-1$ and the current (in amperes) is given by

$$i(t) = 0$$
 for $t < 0$
= $1 - \exp(-20t)$ for $t \ge 0$

P4.39. The circuit shown in Figure P4.39 is operating in steady state with the switch closed prior to t = 0. Find expressions for $i_L(t)$ for t < 0 and for $t \ge 0$. Sketch $i_L(t)$ to scale versus time.

P4.39 In steady state, the inductor acts as a short circuit. With the switch closed, the steady-state current is $(20\,\mathrm{V})/(5\,\Omega) = 4\,\mathrm{A}$. With the switch opened, the current eventually approaches $i_L(\infty) = (20\,\mathrm{V})/(20\,\Omega) = 1\,\mathrm{A}$. For t>0, the current has the form

$$i_{L}(t) = K_{1} + K_{2} \exp(-Rt/L)$$

where $\textit{R}=20\,\Omega$, because that is the resistance with the switch open. Now, we have

$$i_{L}(0+) = i_{L}(0-) = 4 = K_{1} + K_{2}$$
 $i_{L}(\infty) = 1 = K_{1}$

Thus, we have $K_2 = 3$. The current is

$$i_L(t) = 4$$
 $t < 0$ (switch closed)
= 1 + 3 exp(-10t) $t \ge 0$ (switch open)

