EELE 417/517 Fall 2014 Computer Problem Assigned Friday, October 17, 2014 Due at the start of class on Wednesday, October 22, 2014

A loudspeaker system with two drivers is described by the following geometry:

Each driver is modeled as a baffled piston radiator (<u>far field case</u>, K&F eqn. 7.4.17). Both drivers are operated at $\mathbf{f} = \mathbf{5} \mathbf{kHz}$ into air at 20°C. The observation point is "X", located in the plane of the 12 cm driver.

When the 12 cm radius driver is operated *alone*, the SPL measured for $\theta_{12} = 0^{\circ}$ at "X" is found to be 100 dB re 20µPa.

When the 1 cm radius driver is operated *alone*, the SPL at "X" is also measured to be 100 dB re 20 μ Pa, but <u>NOTE</u> that $\theta_1 = 5.7^{\circ}$ for the 1 cm driver because "X" is not in the same plane as the 1 cm driver.

(a) Under these operating conditions, determine and plot the *pressure amplitude in the plane of the* 12 cm driver's principal axis as a function of the angle θ for each driver <u>acting alone</u>. Be careful, because $\theta = \theta_{12}$, BUT $\theta \neq \theta_1$ because the off-axis angle of the 1cm driver is skew to the observation plane. MATLAB or Excel would be a useful way to do this. Comment on the results. { Bessel functions: Excel: besselj(x,1) MATLAB: besselj(1,x) }

(b) Finally, calculate the far field pressure amplitude as a function of θ when the two drivers operate in phase at the same time. Again, NOTE that $\theta = \theta_{12}$, BUT $\theta \neq \theta_1$. Also note that r_{12} and r_1 are not the same, so the arrival phase will differ in the receiver plane of "X". Comment on the results.

Submit hardcopy of your "computer code" and the three plots: pressure amplitude of 12 cm driver acting alone, pressure amplitude of 1 cm driver acting alone, and pressure amplitude of both drivers operating in phase (taking into account the change in pressure amplitude and phase with respect to the two drivers).