
Lab 10: Filtering and Edge Detection of Images

In this lab we re-introduce digital images as a signal type for the application of filtering. The 
lab has a project on lowpass and highpass filtering of images with an investigation of the 
frequency content of an image. In addition, the problem of edge detection is introduced, where a 
combination of linear and nonlinear filters are used to solve the problem.

1 Overview

1.1 Digital Images

An image can be represented as a function x(t1, t2) of two continuous variables representing the 
horizontal (t2) and vertical (t1) coordinates of a point in space. For monochrome images, the 
x(t1, t2) would be a scalar function of the two spatial variables, but for color images the function 
would be a vector function of the two variables.1 Moving images (TV) would add a time 
variable to the two spatial variables. Monochrome images are displayed using black and white 
and shades of gray, so they are called grayscale images. In this lab we will consider only sampled 
grayscale still images.

A sampled grayscale still image would be represented as a two-dimensional array of numbers of 
the form

x[m,n] = x(mT1, nT2) 1 ≤ m ≤M, and 1 ≤ n ≤ N
Typical values ofM and N are on the order of 256 or 512; e.g., a 512×512 image has nearly the same
resolution as a standard TV image. In Matlab we can represent an image as a matrix consisting
of M rows and N columns. The matrix entry at (m,n) is the sample value x[m,n]—called a pixel
(short for picture element).

An important property of light images such as photographs and TV pictures is that their values
are always non-negative and finite in magnitude; i.e.,

0 ≤ x[m,n] ≤ Xmax

This is because light images are formed by measuring the intensity of reflected or emitted light
which must always be a positive finite quantity. When stored in a computer or displayed on a
monitor, the values of x[m,n] are usually scaled so that an eight-bit integer representation can be
used. With 8-bit integers, the maximum value can be Xmax = 28− 1 = 255, and there are 256 gray
levels for the display.

1.2 Displaying Images

As you will discover, the correct display of an image on a gray-scale monitor can be tricky, especially
after some processing has been performed on the image. We have provided the function show img.m
in the DSP First Toolbox to handle most of these problems, but it will be helpful if the following
points are noted:

1. All image values must be non-negative for the purposes of display. Filtering may introduce
negative values, especially if differencing is used e.g., a high-pass filter).

1For example, an RGB color system needs three values for red, green and blue at each spatial location.
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2. The default format for most gray-scale displays is eight bits, so the pixel values x[m,n] in the
image are integers in the range 0 ≤ x[m,n] ≤ 255 = 28 − 1.

3. The Matlab functions max and min can be used to find the largest and smallest values in
the image.

4. The functions round, fix and floor can be used to quantize pixel values to integers.

5. The actual display on the monitor is created with the show img function. The appearance of
the image can be altered by running the pixel values through a “color map.” In our case, all
three primary colors (red, green and blue, or RGB) are used equally, so we get a “gray map.”
In Matlab the gray color map is created via

colormap(gray(256))

which gives a 256 × 3 matrix where all 3 columns are equal. colormap(gray(256)) creates
a linear mapping, so that each input pixel amplitude is rendered with a screen intensity
proportional to its value (assuming the monitor is calibrated). For our experiments, non-
linear color mappings would introduce an extra level of complication, so we won’t use them.

6. When the image values lie outside the range [0,255], or when the image is scaled so that it
only occupies a small portion of the range [0,255], the display may have poor quality. We can
analyze this condition by using the Matlab function hist to plot how often each pixel value
occurs (called a histogram). This will indicate if some values at the extremes are seldom used
and, therefore, can be “thrown away.”

Based on the histogram, we can adjust the pixel values prior to display. This can be done in
two different ways:

7. Clipping the image: When some of the pixel values lie outside the range [0,255], but the
scaling needs to be preserved, the pixel values should be clipped. All negative values would
be set to zero, and anything above 255 would be set equal to 255. The function clip is
provided to do this job.

8. Automatically rescaling the image: This requires a linear mapping of the pixel values:2

xs[m,n] = αx[m,n] + β

The scaling constants α and β can be derived from the min and max values of the image, so
that all pixel values are recomputed via:

xs[m,n] =
⌊
256

x[m,n]− xmin

xmax − xmin

⌋
where bxc is the floor function, i.e., the greatest integer less than or equal to x.

1.3 Image filtering

It is possible to filter image signals just as it is possible to filter one-dimensional signals. One
method of filtering two-dimensional signals (images) is to filter each row with a one-dimensional
filter and then filter each of the resulting columns with a one-dimensional filter. This is the approach
taken in this lab.

2The Matlab function show img will perform this scaling while making the image display.
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2 Warm-up: Display of Images

You can load the images needed for this lab from *.mat files. Any file with the extension *.mat 
is in Matlab format and can be loaded via the load command. To find some of these files, look 
for *.mat in the DSP First toolbox or in the Matlab directory called toolbox/matlab/demos. 
Some of the image files are named lenna.mat, echart.mat and zone.mat, but there are others 
within Matlab’s demos. The default size is 256 × 256, but alternate versions are available at 512 
× 512 under names such as lenna512.mat. After loading, use the whos to determine the
name of the variable that holds the image and its size. 

Although Matlab has several functions for displaying images on the CRT of the computer, we
have written a special function show img() for this lab. It is the visual equivalent of sound(), 
which we used when listening to speech and tones; i.e., show img() is the “D-to-C” converter for 
images. This function handles the scaling of the image values and allows you to open up multiple 
image display windows. Here is the help on show img:

function [ph] = show_img(img, figno, scaled, map)
%SHOW_IMG display an image with possible scaling
% usage: ph = show_img(img, figno, scaled, map)
% img = input image
% figno = figure number to use for the plot
% if 0, re-use the same figure
% if omitted a new figure will be opened
% optional args:
% scaled = 1 (TRUE) to do auto-scale (DEFAULT)
% not equal to 1 (FALSE) to inhibit scaling
% map = user-specified color map
% ph = figure handle returned to caller
%----

Notice that unless the input parameter figno is specified, a new figure will be opened. This is
extremely important if you want to display several images together in subplot. Using subplot is
the preferred method of printing multiple images (e.g., for comparisons in lab reports) because one
subplot can easily hold four images.

2.1 Display Test

In order to probe your understanding of image display, generate a simple test image in which all
of the rows are identical.

(a) Create a test image that is 256× 256, by making each horizontal line a discrete-time sinusoid
with a period of 50 samples. Note that the row index is the vertical axis and the column
index is the horizontal axis.

(b) Make a plot of one row of the image to verify contents of the image.

(c) Use show img to display the test image, and then explain the gray scale pattern that you
observe. If the sinusoid was generated with values between +1 and −1 explain the scaling
used to make the 8-bit image for screen display. In other words, what is the (integer) gray
level for zero? for −0.3?

Instructor Verification (separate page)

(d) Now load and display the lenna image from lenna.mat. The command load lenna will put
the sampled image into the array xx.
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(e) Make a plot of the 200th row of the lenna image. Observe the maximum and minimum
values.

(f) Consider a way in which you might display the negative of the lenna image by rescaling the
pixels. In other words derive a linear mapping to remap the pixel values so that white and
black are interchanged.

Instructor Verification (separate page)

3 Lab: Filtering Images

Previously you have experimented with one-dimensional filters, such as running averagers and 
first-difference filters, applied to one-dimensional signals. You have also applied some filters to 
images by regarding each row (or column) of the image as a one-dimensional signal.

3.1 One-Dimensional Filtering

For example, the 50th row of an image is the N -point sequence x[50,n] for 1 ≤ n ≤ N . We can 
filter this sequence with a 1-D filter using the conv operator, but how can we filter the entire image?
That is the objective of this Lab.

(a) Load in the image echart.mat with the load command. Extract the 33rd row from the
bottom of the image using the statement

x1 = echart(256-33,:);

Filter this one-dimensional signal with a 7-point averager and plot both the input and the
output in the same figure using a two-panel subplot. Observe whether or not the filtered
waveform is “smoother” or “rougher” than the input. Explain.

(b) Now extract the 99th column of the image, and filter it with a first difference. Plot the
input and output together for comparison. Once again, observe whether or not the filtered
waveform is “smoother” or “rougher” than the input. Explain.

3.2 Blurring an Image

From parts (a) and (b) above, perhaps you can see how you could use a for loop to write an M-file
that would filter all the rows. This would create a new image made up of the filtered rows:

y1[m,n] =
1
7

6∑
`=0

x[m,n− `] for 1 ≤ m ≤M

However, this image y1[m,n] would only be filtered in the horizontal direction. Filtering the columns
would require another for loop, and finally you would have the completely filtered image:

y2[m,n] =
1
7

6∑
k=0

y1[m− k, n] for 1 ≤ n ≤ N

In this case, the image y2[m,n] has been filtered in both directions by a 7-point averager.
These filtering operations involve a lot of conv calculations, so the process can be slow. Fortu-

nately, Matlab has a built-in function conv2( ) that will do this with a single call. It performs
a more general filtering operation than row/column filtering, but since it can do these simple 1-D
operations it will be very helpful in this lab.
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(a) To filter the image in the horizontal direction using a 7-point averager, we form a row vector
of filter coefficients and use the following statement:

bh = ones(1,7)/7;
y1 = conv2(xx, bh);

In other words, the filter coefficients bh for the 7-point averager stored in a row vector will
cause conv2( ) to filter all rows in the horizontal direction. Display the input image xx
and the output image y1 on the screen at the same time. Compare the two images and
give a qualitative description of what you see. Extract row #33 (from the bottom again)
from the output image (y1(256-33,:)) and compare it to the output obtained in part (a) of
Section 3.1.

(b) Now filter the image y1 in the vertical direction with a 7-point running averager to produce
the image y2. This is done by calling conv2 with a column vector of filter coefficients. Plot
all three of the images xx, y1, and y2 on the screen at the same time. Now describe what
you see. Where or when have you seen this effect before?

(c) What do you think will happen if you repeat parts (a) and (b) for a 21-point moving averager?
Try it, and compare the results of the 21-point and 7-point averaging filters. Which one causes
a more severe degradation of the original image?

3.3 More Image Filters

(a) Load the lenna image into Matlab and display the image using the show img command.

(b) Filter the lenna image with each of the following filters. Remember to filter both the rows
and columns unless otherwise directed.

(i) a1 = [1 1 1]/3;

(ii) a2 = ones(1,7)/7;

(iii) a3 = [1 -1]; For this filter, filter only the rows. Note that this filter will yield negative
values. Before displaying the resulting image it must be scaled to fit back into the
allowable range of [0,255]. This will be done automatically by the show img() command.

(iv) a4 = [-1 3 -1]; For this filter only filter the rows.

(v) a5 = [-1 1 1 1 -1];

Comment on the effect of each filter, pay special attention to regions of the image with lots of
detail such as the feathers. Answer the following questions by showing representative images
that exhibit the characteristics of highpass or lowpass filtering.

• Which filters appear to be lowpass filters?

• Describe the general effect of a lowpass filter on an image.

• Which ones are highpass filters?
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3.4 Frequency Content of an Image

Filters can be used to investigate the frequency content of an image. From what we have seen so far,
lowpass filtering of an image causes blurring. In this section, we would like to prove that high-pass
(or band-pass) filtering will “sharpen” an image. In the next section, we will examine a system for
edge detection that also uses high-pass filters. For this exercise you should use baboon.mat as the
test image.3

(a) To make this demonstration we need some filters that give a smooth frequency response.
For this purpose we will use “Gaussian” shaped functions for the FIR filter coefficients {bk}.
First, of all we need coefficients for a low-pass filter:

bk =


1.1 for k = 10
e−0.075(k − 10)2

for k = 0, 1, 2, . . . 20 and k 6= 10
0 elsewhere

For this filter, plot the impulse response as a stem plot, and then plot the magnitude of the
frequency response. Put them on the same page with a two-panel subplot. Hint: remember
that Matlab starts indexing at one, the formula for bk will have to be adjusted by one.

(b) Produce a bandpass filter by the following definition:

b̃k =

{
cos(0.4π(k − 10))e−0.13(k − 10)2

for k = 0, 1, 2, . . . 20
0 elsewhere

In this case the filter coefficients {b̃k} are a Gaussian multiplied by a cosine. Once again, plot
the impulse response as a stem plot, and also plot the magnitude of the frequency response.
Put them on the same page with a two-panel subplot. Explain why this filter is called a
bandpass filter (BPF).

(c) Load the test image from baboon.mat. Filter this image along both its rows and columns
with the LPF from part (a), and save the result as y[m,n] for part (e). Display the image to
see the effect of the filter. Determine whether the frequency content of y[m,n] is mostly low
frequency or high frequency.

(d) Filter the test image along both its rows and columns with the BPF {b̃k} and save the result
as v[m,n] for part (e). Once again, determine whether the frequency content of v[m,n] is
mostly low frequency or high frequency.
NOTE: if you try to display this image you will experience problems because it has negative
values which must be rescaled to get a positive image for the CRT. In addition, the resulting
display looks mostly gray because its contrast has been compressed significantly due to a
small number of very large or very small values. Use hist to plot the distribution of pixel
values, and then clip the image to eliminate a few of the very large and very small values.

(e) The blurred image in y[m,n] from part (c) can be improved by adding in some of the band-
pass filtered image v[m,n] from part (d). The system in Fig. 1 implements the following
combination:

(1− α)y[m,n] + αv[m,n]
3
The image baboon.mat is one of the Matlab demos, so it always on the Matlab path and can be loaded with 

the load command.
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where α is a fraction, i.e., 0 ≤ α ≤ 1. In effect, α controls how much of the final result
will come from the “band-pass filtered” image. Try to find the best value of α so that the
combination looks as close as possible to the original. Explain why the result looks sharper.

For display, you can put four images together on one page with a four-panel subplot, i.e.,
subplot(2,2,*). When using show img in subplots, set the second argument to 0 to stay in
the same figure (see help show img).

-
x[m,n]

-

-

Low-Pass
Filter

Band-Pass
Filter

-
y[m,n]

-
v[m,n]

������@@
(1− α)
?

������@@
α
6

?

6
���� -

Sharpened
Image

Figure 1: Test set-up for varying low and high frequency content of an image. The parameter α 
should be between 0 and 1.
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3.5 Nonlinear Filters

As you have seen in a previous section of this lab, linear FIR filters are useful in reconstructing 
images. They can also blur or sharpen images via lowpass or highpass filters. However, there are 
also other types of filters which are useful in image processing. Nonlinear filters are useful because 
the frequency content of the output image can be quite different from that of the input image, 
yet the two are still mathematically and visually related. For example, when an artist touches up 
a photograph, the output image is “visually related” to the input. A common problem in image 
processing is to find a sequence of linear and non-linear filters that corresponds to a certain visual 
relation. The problem posed in this section is, how do we get a computer to trace the outlines of 
objects in an image? A good solution turns out to require a highpass linear filter followed by a 
nonlinear filter.

3.6 Edges in an Image

The outline of an object is usually marked by a sudden change in color or gray level. The outline 
of a black object against a white background would be the set of points where neighbors have a 
different color. A black point in the image which has a white point to its right would thus be on 
the edge of the object. Most images don’t have solid black and white regions, though.

Since the gray scale variations within each region are usually gradual but the edges are supposed 
to be rapid variations in color, we suspect that a simple highpass filter could detect edges. Try the 
first difference filter on an image such as echart which has only black and white regions. Display 
the result as a grayscale image. How well does the filter work on vertical and horizontal edges?
what about edges at an angle? Explain.

3.7 The Slope-Threshold Function

If we accept the assumption that color (or grayscale) should change rapidly at an edge, all we have 
to do is mark the points whose neighbors have greatly different values. For a single point in the 
image, this means comparing the point’s value to the values of its neighbors. If the absolute value 
of the difference between one point and the next in any direction is greater than some threshold
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value, the point is probably on an edge. Figure 2 shows a binary (black/white) image where the 
pixels greater than the threshold are black.

Tools Image
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Edge Detections
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Figure 2: Binary image (right) of edge detections on the 200 × 200 “Tools” grayscale image (left).

So far this method is only applied to a single point in an image. In Matlab it is much easier 
to apply an operation to an entire matrix, though. So, we need to create matrices full of all the 
differences between points and their nearest neighbors, and then compare each entire matrix to the 
threshold value.

The easiest way to do this is with the first difference filter. Applying the horizontal first 
difference filter to the image produces a matrix full of the difference between each point and the 
one to its right. However, the filtering operation inserts an extra column (see help filter2). 
Which column is extra? Can you remove it? You should be able to produce a matrix yh of exactly 
the same size as the original image where each point in the matrix is exactly the difference between 
the corresponding point and the one to its right in the original image. We also need the vertical 
first difference for the edge detector. If we examine the difference to the right and the difference 
downward, that will cover all the points so that the difference between each point and the next will 
be evaluated exactly once. In an approximation of the edges, we can disregard the difference to the 
left and the difference upward because those differences will be evaluated for the points which lie 
to the left and up. What this means is that for a sudden transition between two points, only one 
of the two points will be marked as an edge.

Now you should have the horizontal (yh) and vertical (yv) difference matrices trimmed so that 
they line up with the original image, i.e. xx(1,1)-xx(1,2) equals yh(1,1) and so on. Now you 
have to compare their absolute values to the threshold value. In Matlab, logical operations such 
as a>b, a<b, etc. produce result values equal to 1 for true and 0 for false. The logical operation 
a|b means “a OR b” and it will be useful here. The statement

yy = (abs(yh)>thr)|(abs(yv)>thr);

where thr is the threshold value, should produce a matrix yy filled with zeros where points in the 
original image do not lie on edges and ones where they do. For visibility, you should scale the 
output so that the minimum and maximum values are at least 200 apart. For printing, you should 
invert the color so that most of the output is white.

If the threshold is zero, any point which is not surrounded by points of the same color is marked. 
This is too sensitive for an image with a good variety of color, i.e. a photograph. If the threshold 
value is too high, the edge of a gray object on a black background might not be marked. The
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threshold value should be carefully chosen for this operation. For lenna or echart, a good value 
might be between 8 and 18. Experiment with the threshold value to get a good looking result—it 
is possible to make the output look like a line drawing that outlines the head, hat and feathers in 
lenna.mat.

3.8 What’s Nonlinear about Edge Detection?

Although we used the horizontal and vertical first difference filters which are LTI systems, the 
logical operation is not linear. The threshold comparison converts each line of the image into a 
type of “square wave” function. Plot row 94 of the output image y along with the corresponding 
row of the input image xx. Is edge detection sensitive to low frequency or high frequency content, 
or neither? Explain.
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Lab 10
Instructor Verification Sheet
Staple this page to the end of your Lab Report.

Name: Date:

Part 2.1 Create and display sinusoidal test image:

Verified:

Part 2.1 Display “lenna” image and image negative:

Verified:
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