Detection of Musical Pitch from Recorded Solo Performances Preprint 3541 (F1-9)

James W. Beauchamp, University of lllinois at Urbana-Champaign, Urbana, lllinois, USA
Robert C. Maher, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
Rebekah Brown, Indiana University, Bloomington, Indiana, USA

Presented at AUDITO
the 94th Convention [l
1993 March 16-19

Berlin ‘?@)

This preprint has been reproduced from the author’s advance
manuscript, without editing, corrections or consideration by
the Review Board. The AES takes no responsibility for the
contents.

Additional preprints may be obtained by sending request
and remittance to the Audio Engineering Society, 60 East
42nd Street, New York, New York 10165, USA.

All rights reserved. Reproduction of this preprint, or any
portion thereof, is not permitted without direct permission
from the Journal of the Audio Engineering Society.

AN AUDIO ENGINEERING SOCIETY PREPRINT



Detection of Musical Pitch from Recorded Solo Performances

James W. Beauchamp, University of Illinois at Urbana-Champaign,
Urbana, Illinois 61801, USA

Robert C. Maher, University of Nebraska-Lincoln, Lincoln, Nebraska
68588-0511, USA

Rebekah Brown, Indiana University, Bloomington, Indiana 47405,
USA

Our frequency-domain-based pitch detector graphs musical pitch as the log of detected
fundamental frequency on a Unix computer. Recorded virtuosic solo performances are
difficult to track when they contain frequency-obscuring reverberation, or when they are
dry, since extraneous noises can then interfere. We tested our detector on dry and
reverberated performance versions of two musical passages and found it to work quite
well on dry versions, but performance was degraded on the reverberated versions. Also,
we used the spectral and fundamental frequency data to resynthesize the recordings,
with the advantage that most extraneous noises and reverberation were eliminated. The
theory of the detector and possibilities for improving its performance are discussed.

1 System Overview

Our objective is to develop a tool for accurately detecting and graphing the fundamental
frequency or musical pitch as a function of time for solo performance. Although this area has
had a long history of activity [1-4], no circuit or computer algorithm has been shown to work in a
coipletely reliable fashion, particularly for rapid passages recorded in either a studio or
reverberant environment. Two applications are automatic music transcription and resynthesis
with altered timbre, tempo, and pitch range. Also of interest are musicological applications
where the detected output can be used to study timing and intonation of performances.

Rapid musical passages present peculiar problems since notes are often very short and not
necessarily stable. In other words, a large proportion of each note may consist of attack and
decay transients, where the pitch is moving towards or away from a stable value. With studio
recordings, noises caused by various mechanical devices (such as violin bows and clarinet keys)
and the performer (e.g., breath noises) can cause problems, whereas in a hall the predominant
factor seems to be the echo of previous notes occurring simultaneously with the current one,
causing a chord effect.

Our current solution to the problem is a program, implemented on a NeXT computer, which
attempts to find the best match to a harmonic series within a time-variant spectrum at each time
frame. The spectrum is found using an algorithm originally developed by McAulay and Quatieri
[5] to determine spectral peaks which exceed a certain threshold. Then the fundamental
frequency is estimated by a harmonic search and match method we call the two-way mismatch
method. A special graphing program, which works with either Tek4014 or Postscript protocols,



is used to plot the log of the estimated fundamental frequency, so that it is displayed as a graph
of musical note value (e.g., G#, Bb); in this way, the graph can be directly interpreted in terms of
standard equal-tempered pitch.

Additional programs can take the spectrum and fundamental frequency data and produce a
harmonic analysis file, which is essentially the same as the original time-varying spectrum file
except that all non-barmonic information is removed. When this file is resynthesized using
additive synthesis, the result is ideally not only free of noise but also, in the case of reverberated
recordings, would appear to be void of echo.

Fig. 1 depicts the frequency detection and optional resynthesis process.

2 Time-Variant Spectrum Analysis

For each frame a Kaiser-windowed, zero-padded FFT is taken on the input signal. The windows
are generally 512 samples long, the FFT 1024 samples, and the hop size is 128 samples. After
high frequency emphasis is applied, the peaks above a certain threshold (given by the user) are
identified, and their amplitudes and frequencies are refined by quadratic interpolation. More
details for this general procedure are given in [5-8]. Our program for carrying out this procedure
is called mqan. The result is a series of frames with a variable number of spectral components,
called "peaks", stored in an mq file.

3 Fundamental Frequency Determination

The program fcheck is used to process an mq file to produce a file consisting of a list of
fundamental frequencies (FFs), one for each frame (called afffile). The user specifies a
minimum and maximum FF for the search range and the number of harmonics to use for the
subsequent error calculation. Then for each frame, fcheck scans through the search range of FFs
and for each trial frequency performs a calculation called the two-way mismatch error. The
frequency which produces the least error is the chosen FF value for that frame. The error
calculation works as follows:

First, the amplitudes of all peaks in the current frame are normalized by the maximum amplitude
(giving the set {a_}). The user has already specified the number of harmonics N (typically 10).
Then, for each harmonic n of the current trial FF, the difference Af,  between the harmonic’s
frequency and the nearest peak frequency is calculated. An error E, based on the {Af }, the
{a,}, and the harmonic frequencies is then calculated. This completes the predicted-to-measured
error calculation. Next, for each peak in the frame, the difference Af, between the peak’s
frequency and the nearest trial harmonic is calculated. An error E, based on the {Af, }, the {a },
and the peak frequencies is then calculated. This completes the measured-to-predicted error
calculation, The total error is then E = wE, + w,E, ,a function of the trial FF. The weights
w, and w,, as well as various constants in the formulas for E and E, are chosen by trial and

error to give good results over a variety of test signals.

2



The FF search algorithm for finding the minimum value of E proceeds in two stages: First, the
entire FF search range is scanned by semitone (5.9%) increments, and the local minima are
noted. Second, a much finer step size is used in the region of each local minimum to find the
true global minimum and to improve the accuracy of the FF detection. The limit of this
refinement can be set to converge the final FF within some arbitrary figure such as 1 Hz. We
find it necessary to perform a detailed search of most local minima found in the first stage, rather
than just the global minimum, because the depths of minima can not be absolutely determined
from results of the first, coarse increment stage.

Figures 2 and 3 graphically depict the two-way mismatch algorithm. Fig. 2 shows how the trial
(predicted) harmonics are matched to the measured spectral peaks (tracks). Fig. 3 shows how the
measured peaks are matched to the trial harmonics.

Fig. 4 shows two typical curves of error E as a function of trial FF, For the first curve, the
decision is clear cut. However, the decision is not so obvious for the second curve, where it
could be said that there are two possible candidates for the "best" FF value. However, in our
current implementation, we take the FF corresponding to the lowest value of E.

The two-way mismatch method is designed to identify the best harmonic sequence of peaks,
based on minimizing the mismatch error. If a frame contains peaks due to extraneous or non-
harmonic sources, the performance of the pitch detector will be degraded since the signal no
longer matches the basic assumption on which the mismatch error method is based, i.e., that the
signal consists solely of harmonic partials,

4 Solo Passage Results

Two passages were tested: 1) the first 8 bars (87 notes, E4 to E6) of the Partita I for
Unaccompanied Violin by J. S. Bach; and 2} a 2 bar (= 22 notes, Db, to Db ) fragment from the

third movement (Abime des oiseaux) of Oliver Messiaen’s Quatuor pour la fin du temps for
unaccompanied clarinet.

We denote p as musical pitch, which can be defined in terms of frequency f using
p = 9+ 12 log(f27.5)1og(2) .

Continuous values of p are graphed vs. time, and its integer values are identified by
corresponding musical notes on the vertical axis. Note that the frequency for Co corresponds to p

=0, for C#, we have p = 1, and that middle C (C, which is f = 261.6 Hz, corresponds to p = 48,

For the Partita we tested three versions. The first was generated by a computer using a
waveform consisting of 8 equal-amplitude harmonics and an amplitude envelope having .02 s
rise and fall times. For this signal, the FFs were perfect equal-tempered frequencies where

(p-N2
f=27152



The accuracy of the overall pitch detector system for this "ideal" signal is demonstrated in Fig. 5.
Only tiny variations from perfection occur.

Fig. 6 shows the result for a studio violin recording, performed by a very competent violinist.
All of the notes are there, but the graph is obscured by glitches which occur between notes.
(These may be caused by the scrapes of the bow on the string.) Many of the glitches are very
short and could be removed by a subsequent deglitching operation. This operation would be
based on the assumption that a frequency for a given frame is not valid if it is sufficiently
different than the previous frame and stays different for only 1 or 2 frames. To remove the
glitch, the frequencies of these frames could be replaced by the frequency of the frame preceding
the glitch.

Fig. 7 shows the result for a reverberated CD performance by a well known violinist. Most of
the 87 notes register correctly, but a good number (around 15) are missed. Glitches between
notes are not as common (one suspects because the reverberation smooths transitions), but now
glitches occur even during notes which register, while some notes (notably the bottom E4s) are
missed altogether. Clearly reverberation makes the pitch detection task more difficult for this
example. Tweeking of the mismatch error function or aspects of the algorithm might yield
substantial improvement, but we did not do that in this case.

All notes register in the detection of a studio recording of a clarinet performing the Messiaen
fragment, as shown in Fig. 8. However, there are occasional glitches just before and just after
rests in the score, which possibly could be eliminated based on the weak amplitudes that occur at
those points.

As shown in Fig. 9, the result is surprisingly good for a reverberated LP performance of the
Messiaen fragment, but in this case we tuned the detection algorithm a bit. All notes seem to
register, but there are a couple of extra little "blips" and the very rapid grace notes are rather
obscure. Also, pitches linger on through the rests, not necessarily inappropriately, due to the
reverberation.

5 Synthesis from Spectral Peak and Fundamental Frequency Data

The program harmformat is used to process spectral peak data produced by mqan, as guided by
the FF data produced by fcheck, to produce a harmonic analysis file consisting of harmonic
amplitudes and frequencies for consecutive frames. This can then be further processed by an
additive synthesis program addsyn (see [8] for a more detailed description) to create a sound file.

Audition of the addsyn-produced sound file, in comparison to the original, provides useful
insight into the quality of the pitch tracking. In many cases, the glitches which appear so
prominent in the musical pitch vs. time plots are hardly noticeable in the synthesis, probably
because the glitches occur at low amplitude or are extremely short.

In the case of studio recordings, the synthesized result is, for the most part, much cleaner than the
original; low level bow scrapes and other extraneous noises are eliminated. The result may not
be as natural-sounding as the original, but this could be improved by adding reverberation. For



our two studio recordings all notes seem to be present. Most glitches are not audible, except for
some violin scrapes that are quite loud (but still acceptable to the violin aficionado) in the
original recording.

In the case of hall recordings, the sound overlay (chord) effect of the reverberation is removed.
However, again, the effect is not entirely natural, as the original amplitude envelopes of the
source instruments have been corrupted by the reverberation effect. Also, unless the FF
detection algorithm is carefully adjusted, some synthesized notes may be incorrect.

6 Conclusions and Extensions

The computer algorithms employed for musical pitch detection of solo passages described in this
paper produce promising results which in the future may be substantially improved with
relatively simple changes to the code. As it is, for studio recordings, we achieved close to 100%
"hits" (notes correctly detected) . The number of "false alarms” (apparent notes or glitches that
do not belong) which occurred in the pitch vs. time graphs is not acceptable, but we suspect that
many of these can be removed either on the basis of brevity or low amplitude. For reverberated
samples, we only achieved a high hit-to-false alarm ratio when the algorithm was carefully
adjusted.

Assuming that the score is known in advance (or that the pitches are otherwise determined), the
pitch vs. time graphs can be a useful tool for determining timing and accurate pitch data. A
useful extension to the display program would be the ability to "zoom in" on an individual note
or group of notes in order to get more accurate readings. One of the present authors (Rebekah
Brown) is focusing on determining the precise intonation of each note in rapidly performed
passages. For this project, she has been using a sound editor on the NeXT computer to segment
individual notes into separate files, and then she applies a pitch-synchronous phase vocoder
program (see [8] for details) to achieve a more accurate, glitchless, determination of frequency
vs. time information. The use of phase to determine frequency is inherently more accurate than
spectral peak detection, but it does require that an approximate value for the frequency is known
in advance.

It may not be possible to provide definitive measurements of the fundamental frequency in
highly transient situations. A reasonable guess is that the method described in this article is
limited to 0.5% accuracy in real situations. It appears that the phase vocoder method, as applied
to individual notes, can give values which are accurate to 0.05% for an "ideal” input waveform,
when frames in the interior of notes are averaged. For real sounds, the phase vocoder can give an
accurate average value, provided an approximate frequency is known in advance. We hope in
the future to do further testing of the pitch detection accuracy using synthetic input signals which
more closely mimic acoustically-generated signals.

Another possible improvement to the detection process would be to utilize frame-to-frame
frequency tracking. This is one aspect of the McAulay-Quatieri (MQ) algorithm which we are
not currently utilizing. While it is true that an individual MQ track does not always correspond
to the same harmonic throughout the life of the track, the tracks could be used to help decide
which of several candidate local minima in the mismatch error function is most likely to be the
correct one,



Acknowledgements

We wish to thank Christopher Kriese for writing the pitchit program, which performs graphic
display of the musical pitch vs, time data. This work was supported, in part, by the Research
Board of the University of Illinois at Urbana-Champaign and by the Research Council and
Department of Electrical Engineering at the University of Nebraska-Lincoln.

8 References

[1] P. A. Tove, L. Ejdes;jo, and A. Svirdstrdm, "Frequency and Time Analysis of Polyphonic
Music", J. Acoust. Soc. Am., vol. 41, no. 5, pp. 1265-1271 (1967).

2] M. Piszczalski and B. A. Galler, "Predicting musical pitch from component frequency
ratios", J. Acoust. Soc. Am., vol. 66, no. 3, pp. 710-720 (1979).

[3] B. Doval and X. Rodet, "Estimation of Fundamental Frequency of Musical Signals", Proc.
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 3657-3660 (1991).

[4] J. C. Brown, "Musical fundamental frequency tracking using a pattern recognition method",
J. Acoust. Soc. Am., vol. 92, no. 3, pp. 1394-1402 (1992).

[5] R.J. McAulay and T. F. Quatieri, "Speech analysis/synthesis based on a sinusoidal
representation", IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, no. 4, pp.
744-754 (1986).

[6] J. O. Smith and X. Serra, "PARSHL: An analysis/synthesis program for non-harmonic
sounds based on a sinusoidal representation”, Proc. 1987 Int. Computer Music Conf., pp.
290-297, Int. Computer Music Assn., San Francisco (1987).

[71 R.Maher and J. Beauchamp, "An Investigation of Vocal Vibrato for Synthesis", Applied
Acoustics, vol. 30, pp. 219-245 (1990).

[8] J. W. Beauchamp, "Unix Workstation Software for Analysis, Graphics, Modification, and
Synthesis of Musical Sounds", Audio Engineering Soc. Preprint (1993).



sound file

spectrum
analysis
(mqan)

mq| file

fundamental
frequency
detector
(fcheck)

ff| file

musical
pitch

display

(pitchit)

harmonic
sieve

(harmformat)

|

graphics

an|file

additive
synthesis

(addsyn)

|

sound file

Fig. I Musical pitch detection and harmonic resynthesis system.




Predicted Measured

Harmonic Spectral
Sequence Error to  Tracks
Nearest
Match

IR

Fig. 2 Two-way mismatch method: The predicted-to-measured error calculation.



Predicted Measured

Harmonic Spectral
Sequence  Errorto  Tracks
Nearest
Match

v
\__
T S~

S —
T

————

Fig. 3 Two-way mismatch: The measured-to-predicted error calculation.



© o o o
N () - (4]

Two-way Mismatch Error

o
o

250 300 350 400 450
Frequency [Hz]

0.7

06¢

0.5

0.4

Two-way Mismatch Error

600 700 800 900 1000 1100 1200 1300
Frequency [Hz]

Fig. 4 Two examples of Two-Way Mismatch Error vs. Trial Fundamental Frequency functions.
The selected fundamental frequency corresponds to the minimum value of the error.



I

- 2 0

o 0 =

Time (sec)

Musical Note vs. Time

Fig. 5 Musical Note value vs. time for pitch detection of a computer-generated input signal
synthesized with perfect equal-tempered frequencies: first 8 bars of Bach’s Partita I1l.

11



(9}
~

F¥

@

-
Lo ]
[ A S

©n <
A=)

LaadiE © B O T

sl e

Cs

=
i

® O =

PO I R S SR A S B S R A S A

. | | C4

Musical Note vs., Time

Fig. 6 Musical Note value vs. time for studio recording of violin performance of first 8 bars of
Bach’s Partita I11.

12



c =
=

w
=]

= oo 0

® o 0 =

¢
o
SREN IR Ar i BT SR A A A N A Loy s

Musical Note vs. Time

Fig. 7 Musical Note value vs. time for reverberated recording of violin performance of first 8
bars of Bach’s Partita I11.

13



H o3 0 g X

® o 0 =2

0.0 0.4 0.8 1.2 1,6 2.0 2.4 2.8 3.2 3.6 4.0 4.4
Time (sec)

Musical Note vs. Time

Fig. 8 Musical Note value vs, time for studio recording of clarinet performance of 2 bar
fragment from Messiaen’s Quatuor pour la fin du temps.

14



[ B = 4

= o® Q

® T O =

~ N

Time (sec

Musical Note vs. Time

Fig. 9 Musical Note value vs. time for reverberated recording of clarinet performance of 2 bar
fragment from Messiaen’s Quatuor pour la fin du temps.



