The Science of Sound for the Music Technology Student

Robert C. Maher Montana State University – Bozeman

164th Meeting of the Acoustical Society of America – Kansas City – October 2012

Outline

- Introduction
 - Music Technology degree programs
 - Prerequisites and math/science
 - Science topics of interest to Music Tech
- Lesson Example: source-filter model of musical instruments
- Prospects for future work
- Conclusion

Introduction

- Music Technology degree programs are popular in the U.S. and around the world
- Music Tech degrees typically include
 - music theory
 - audio recording and mixing
 - multimedia production
 - electronic and computer music
 - computer applications in music composition

Music Technology

Introduction (cont.)

- Example: Music Tech Bachelor of Arts
 - Composition
 - Sound Design
 - Audio Technology
 - At least 3 semesters of applied music
 - Interdisciplinary collaboration
- Students fulfill university general ed reqs: but no specific math/science courses

Introduction (cont.)

- Music Tech "Science of Sound"
 - Principles of mass-spring-damper systems
 - Sound waves and sound properties
 - Hearing physiology and psychology
 - Architectural and Environmental acoustics
 - Musical acoustics
 - Audio engineering

Challenges

- Use of mathematical expressions like $c = f \lambda$, $\omega = \sqrt{(s/m)}$, 20 $\log_{10}(p/p_{ref})$ and x(t) * h(t)are not initially meaningful
- Sole reliance upon handwaving can be misleading, due to oversimplification
- Time-domain vs. Frequency-domain is initially confusing, but worth emphasizing

What has worked for me?

- Graphical views and graphical lookup
- Block diagrams
- Minimal use of arcane symbols

Graphical Representations

- Time Domain: amplitude vs. time
- Frequency Domain: amplitude vs. freq
- Spectrogram: amp vs. freq vs. time

Musical Notation

- Notation specifies pitches, durations, and time evolution
- Representation is like a spectrogram: frequency vs. time

Nomograms

College of ENGINEERING

Example

- Interpreting the effect of a filter on a musical signal
- Describing a musical instrument using a lumped model

Bandwidth Examples

- Speech bandwidth (400 Hz 4kHz)
- Sub-100 Hz bandwidth (very quiet)
- Sub-400 Hz bandwidth
- Above- 4 kHz bandwidth

Mountains & Minds

Musical Instruments

- Most conventional musical instruments have
 - an excitation source
 - a vibrating element
 - a resonant body
 - a means of *coupling* the vibrations so that they radiate into the air as sound waves

Musical Instruments (cont.)

- The excitation is a motive force
- The vibrating element usually creates
 many harmonics
- The resonant body emphasizes some frequencies and deemphasizes others
- The coupling means takes energy from the vibrating element and "loses" it (radiates) into an acoustical wave through the air

Formant Example

First three vowel formant frequencies

Vowel	/ 1	II	
/i/ ("eee")	280 Hz	2250 Hz	2890 Hz
/l/ ("eeh")	400 Hz	1920 Hz	2650 Hz
/a/ ("ah")	710 Hz	1100 Hz	2450 Hz

- Music Technology students can understand acoustical principles with minimal math
- Care must be taken to avoid oversimplification that leads to incorrect conclusions
- Working with mathematically unsophisticated students is <u>fun</u>: it reminds us what it was like to learn things the *first* time.

