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ABSTRACT 
 
While students generally demonstrate an intuitive 
understanding of transfer function magnitude terms such as 
low pass and band pass, they are often bewildered by the 
concepts of phase and its relationship to delay. We find that 
although students can easily learn the formulas and 
demonstrate the computer commands necessary to produce 
phase plots, they frequently cannot explain what the plot 
means, or how they might determine whether or not their 
implementation of a particular filter matches the theoretical 
phase response. To address this gap in student learning, we 
are experimenting with a set of lecture notes and 
corresponding hands-on laboratory experiments specifically 
dealing with system phase and delay relationships. Our 
preliminary results indicate that this special treatment of 
phase is both effective and efficient for increasing student 
confidence and ability in handling phase-related engineering 
questions. 

Index Terms— Engineering education, Delay effects, 
Signal Processing 
 

1. INTRODUCTION 
 
Electrical and computer engineering students commonly 
first encounter the concept of phase response either in a 
linear systems and transforms course, or via Bode plot 
construction in an AC circuits course [1-6]. Most textbooks 
introduce phase through the rectangular vs. polar 
equivalence for expressing complex numbers or as a 
consequence of the properties of steady-state sinusoidal 
(phasor) and complex exponential analysis [1]. 

Although such a textbook introduction to phase is 
correct mathematically, the practical and physical 
interpretation is often left unstated, making it difficult for 
students to visualize relationships among time delay, phase, 
frequency, and waveform period. Similarly, textbook 
introductions to terms such as group delay, phase delay, and 
minimum-phase are typically presented as mathematical 
formulae without a functional, practical rationale. 

We have found that students more easily grasp the 
important aspects of phase when they are given multiple 
learning opportunities: textbook description, pencil and 

paper calculations, computer simulation, and laboratory 
observation and measurement. Although our course 
concepts have been developed in the context of a 
junior/senior digital signal processing course, the material 
could easily be adjusted to suit the needs of a basic course 
in linear systems or an introductory control systems class. 

 
1.1 An Example 

 
A simple circuit example helps demonstrate the common 
misunderstandings students encounter when confronting 
phase plots (see Fig. 1 and Fig. 2). 
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Figure 1:  RC circuit example 
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As educators we typically explain the procedure for 

constructing the Bode magnitude asymptotes as [1, 6]: 
 
(i) flat at 0dB for < 0, 
(ii) a breakpoint at = 0, 
(iii) a descending asymptote of -20dB/decade for > 0. 
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Figure 2:  Bode diagram for RC circuit of Fig. 1 
 
Similarly, for the Bode phase asymptote we teach: 
 

(i) flat at 0 degrees for < 0/10, 
(ii) a breakpoint at = 0/10, 
(iii) a descending asymptote of -45°/dec for 

 0/10 <  <10 0, 
(iv) a breakpoint at =10 0, 

and 
(v) flat at -90° for >10 0. 
 
Students quickly learn the step-by-step procedure for 

constructing such plots, and they recognize the Bode 
magnitude plot as being a lowpass function. In the lab, the 
students can assemble the RC circuit, drive it with a signal 
generator, and easily demonstrate that the output amplitude 
declines as they twist the frequency knob to higher 
frequencies. 

The problem comes when we ask the students to 
describe what the phase plot means and how they might 
demonstrate this meaning in the lab. With amplitude it is 
relatively easy to see and verify the attenuation as frequency 
increases, but observing and verifying the phase can be a bit 
more complicated. 

The remaining sections of this paper describe the 
features of our phase-related learning modules, including 
examples of the lecture, homework, and laboratory 
exercises. 

 
2. CHALLENGING THE STUDENTS' PRIOR 

CONCEPT OF PHASE 
 
To get started, we have the students sketch a few functions 
(by hand) overlapping on a single graph, such as for the 
range 0 <  < 2 : 

 
cos( ) 
sin( ) 
cos(  – /2), 

 
and another sketch for: 
 

cos( ) 
cos(  – /4) . 
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Next, we have the students plot three cycles of each 
function using a computer program such as Matlab or Excel 
[2]. 

Finally, we have them modify their computer plotting 
routine for the case that the desired frequency is 1 kHz and 
we want a time range sufficient to see three cycles of the 
overlapping waveforms. This also requires some discussion 
of how best to display a continuous-time waveform as 
sampled data. 

 
cos(2 (1000)t) 
sin(2 (1000)t) 
cos(2 (1000)t – /2) 
 

and 
 

cos(2 (1000)t) 
cos(2 (1000)t – /4) 
 

At this point the students are invited to recognize that: 
 

(a) cos( ) is ±1 when sin( ) is zero, and vice versa  
(which we hope they remember from prior classes!) 

 
(b) sin( ) = cos(  – /2)  (which they also probably 

remember…) 
 
(c) the three cycle plot of cos(2 (1000)t – /4) looks just 

like cos(  – /4), except for the labeling (scaling) of the 
abscissa. 

 
(d) cos(  – /4) is a horizontally right shifted version of 

cos( ): the first peak of cos( ) occurs at = 0, while the 
first peak of cos(  – /4) occurs later, namely at = /4. 

 
Observations (a) and (b) are simply intended to be a 

review reminder. Observations (c) and (d) are more 
significant here. Observation (c) indicates that a waveform 
observed with an oscilloscope or a computer printout has its 
phase determined relative to the waveform reference itself, 
not its particular time scale or frequency, so it is often useful 
in a practical sense to observe the relative phase of a pair of 
waveforms. Observation (d) is important because it 
introduces the notion that a phase shift between two 
waveforms also represents a time shift. 

 
3. ANALYTICAL PREDICTIONS VS. LABORATORY 

MEASUREMENTS 
 
The analytical results for system phase obtained by 
interpreting the Laplace, Z, or Fourier Transforms, e.g., 

H( ), can give a theoretical value for the relative phase 
from input to output for a sinusoidal input signal of any 
frequency . When a student is given the frequency 0, he 

or she simply "looks up" the phase of the system H( ) 
evaluated at  = 0. However, translating this mathematical 
viewpoint to the lab so that the student is confident 
manipulating knobs on the function generator and 
oscilloscope takes a bit more care. 

We have found that a useful approach is to introduce 
the phase delay time concept in the context of the lab 
observations. We have the students set up a simple 
measurement arrangement with a sinusoidal generator, 
simple RC network, and two-channel oscilloscope, as 
depicted in Fig. 3. 

The key concept, of course, is for the students to 
understand that the phase shift is a relative quantity with 
respect to one whole cycle (360° or 2  radians). If the 
predicted phase shift at a frequency of 2 kHz is, say, /4 
radians, then the corresponding delay is expected to be /4 
out of 2 , or 1/8 of a waveform period. At 2 kHz, the 
waveform period, T, is (1/2000) = 500 sec, so the expected 
delay is (1/8)(500 sec) = 62.5 sec between corresponding 
zero-crossings. This calculation can be expressed as: 
 

period 1
seconds 

radians 2
period 1radians Tphase  = phase delay  (3) 

 
If we use the usual convention that a negative phase 

corresponds to a time delay, the expression can be further 
expressed as 
 

phase delay[sec] = Harg1
,  (4) 
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where arg[H( )] is the principal value of H( ) [3]. Note 
that this also allows discussion of what is the principal value 
range and why it is relevant to phase calculations. 

At this point, we reinforce the concepts by having the 
students predict the phase delay time for several different 
simple circuits, then while making measurements in the 
laboratory they complete a table of frequency vs. phase in 
radians and phase delay in seconds in their lab notebooks. 

 
4. LINEAR PHASE 

 
Based on the phase delay relationship, we ask the students 
what phase behavior they would expect for a system that 
had a constant time delay, Tdelay, at all frequencies? In other 
words, a perfect delay line. Using Eqn. 4, they can see that 
 
arg[Hlin( )] =  -  Tdelay    (5) 
 

From this expression, a plot of the phase arg[H( )] as a 
function of radian frequency is a line with slope –Tdelay, and 
this helps the students understand the origin and meaning of 
the term linear phase when referring to system properties. 
This leads naturally to discussion of the linear phase 
characteristics of a digital delay line N samples long, and 
the resulting implications for symmetrical FIR filters that 
also exhibit linear phase. 
 

5. GROUP DELAY 
 
Once the relationship between phase and time delay for 
steady-state sinusoidal excitation is clear, we ask the 
students to consider what to expect if the input signal is 
time-varying instead of steady-state. Specifically, the 
principle of group delay is used to help predict the delay 
effects of the system on the amplitude envelope of a 
modulated signal. 

The concept is explained by having the students 
recognize that for a linear phase system the time delay is the 
negative of the slope of the phase curve with respect to : 
 

delaylin TH
d
d )](arg[    (6) 

 
For a system that does not exhibit linear phase, the time 

delay varies as a function of frequency (i.e., the phase slope 
is not a constant), but evaluating the derivative of the phase 
function with respect to  at a particular frequency 0 can 
still be identified as the time delay for frequencies in the 
vicinity of 0. The phase slope approximation represents the 
so-called group delay of the system [3], 
 

group delay of [H( )] = )(arg H
d
d

 . (7) 

 
6. THE TOPIC SUMMARY 

 
The general framework described above serves as the basis 
for investigating phase concepts in our junior/senior level 
introductory DSP course. The course topics used in this 
particular course are summarized next. 

The undergraduate DSP class begins with a review of 
sinusoidal signal parameters. This provides a first 
opportunity to probe the students' comfort with phase 
concepts. For example, among the first questions we pose 
for the students is: 
 

Consider two signals:  x1(t) =  cos( 0t)  and  
x2(t) =  cos( 0t - /8), where  and  are 
assumed to be positive real constants. For t>0, 
does the first zero crossing of x2(t) occur before or 
after the first zero crossing of x1(t)? 

 
Students clearly see the explicit - /8 phase shift term in the 
expression for x2(t), but it often takes them a while to 
determine that a negative phase shift term corresponds to a 
right shift (delay) in time, and what the implications of this 
shift might be. 

Once this insight is pointed out, we continue to 
reinforce the "sanity check" aspects of phase in subsequent 
exercises and homework problems, and then commence a 
systematic discussion of phase-related issues. 

 
6.1 Phase measurements from analog and digital signal 
observation 
 
In the lab, students make "black box" input-output 
observations for sinusoidal signals with a variety of 
frequencies, determine suitable strategies for measuring 
time differences, and express the waveform delay/advance 
in terms of radians. They also must deal with the cyclical 
ambiguity (wrapping) issues, e.g., is it an advance by /4 or 
a delay by 7 /4? 
 
6.2 Linear phase:  the effect of a frequency-independent 
time delay 
 
First in the lab and then analytically, the students learn that 
a constant frequency-independent time delay system 
corresponds to a straight line (constant slope) when the 
phase charcteristic is plotted as a function of frequency, and 
that the slope of the phase line is attributable to the system 
delay. 
 
6.3 Interpretation of phase delay and group delay 
 
Establishing the clear connection between system delay and 
the resulting system phase shift leads very naturally into a 

221



discussion of phase delay and group delay, as described in 
section 5. 
 
6.4 Phase characteristics based on transfer function 
 
Now that the students have a workable and practical 
understanding of the origin and nature of system phase, the 
analytical derivation of system phase from z or from 
Laplace transforms is appropriate and meaningful. The 
geometric approach for estimating magnitude and phase 
from pole-zero vectors is quite helpful, too. 
 
6.5 Interpretation and explanation of minimum phase 
systems 
 
Finally, we conclude our special treatment of phase 
concepts by studying the properties of minimum phase 
systems and help the students learn the origin and rationale 
of this terminology. The background is also very helpful 
when introducing the principles and applications of inverse 
filters and all-pass phase compensation filters later in the 
course. 
 

7. RESULTS AND DISCUSSION 
 
While none of the teaching strategies we employ in studying 
phase topics are revolutionary, we do find that the time 
spent on explaining and reinforcing the connections 
between phase response and frequency-dependent system 
delay is highly worthwhile. 

Our assessment procedure has been informal, consisting 
of a simple phase pre-test at the start of the semester, 
followed by the special phase exercises and lab 
experiments. We then include specific problems on the mid 
term and the lab exams to help us understand whether or not 
the students have learned the fundamental principles. Our 
experience is that the students on average perform rather 
poorly on the pre-test despite the fact that we assume they 
have seen phase many times in their earlier circuits and 
linear systems classes. After the special exercises and 
reinforcement, the exam performance is substantially 
improved. Thus, the preliminary results indicate that this 
special treatment of phase is effective for increasing student 
confidence and ability in handling phase-related engineering 
questions. 

We do not yet have any measurements or formal 
evidence regarding the level of retention for the phase-
related topics emphasized in the DSP course. We plan to 
incorporate the phase questions into our regular curricular 
pre-testing arrangements that are used as part of our 
ongoing accreditation assessment. 
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