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A new digital signal-processing method is presented for separating two monophonic
musical voices in a digital recording of a duet. The problem involves time-variant
spectral analysis, duet frequency tracking, and composite signal separation. Analysis
is performed using a quasi-harmonic sinusoidal representation based on short-time
Fourier transform techniques. The performance of this approach is evaluated using
real and artificial test signals. Applications include background noise reduction in live
recordings, signal restoration, musicology, musique concrete, and digital editing,
splicing, or other manipulations.

0 INTRODUCTION criteria may be identified. If two interfering signals
occupy nonoverlapping frequency bands, for example,

Separation of superimposed signals is a problem of the separation problem can be solved by using fre-
interest in audio engineering. For example, it would quency-selective filters. In other cases the competing
often be useful to identify and remove undesired in- signals may be described in a statistical sense, allowing
terference (such as audience or traffic noise) present separation using correlation or a nonlinear detection
during a live recording. Other examples include sep- method. However, most superimposed signals, such
aration and replacement of errors in a recorded musical as two musical instruments playing simultaneously, do
performance, separation of two simultaneous talkers not allow for such elementary decomposition methods,
in a single communications channel, or even adjustment and other strategies applicable for signal separation
of the level imbalance occurring when one musician must be discovered.
in an ensemble briefly turns away from the microphone. In the case of ensemble music, sounds emanating

Considered in this paper is a digital signal-processing from different musical instruments are combined in an
approach to one aspect of the ensemble signal separation acoustic signal, which may be recorded via a transducer
problem: separation of musical duet recordings. The of some kind. Despite the typical complexity of the
primary goal of thisproject was to develop and evaluate recorded ensemble signal, a human listener can usually
an automatic signal separation system based primarily identify the instruments playing at a given point in
on physical measurements rather than psychoacoustic time. Further, a listener with some musical training or
models of human behavior, experience can often reliably transcribe each musical

In order to separate the desired and undesired signals voice in terms of standard musical pitch and rhythm.
we must resort to prior knowledge of some aspect of Unfortunately the methods and strategies used by human
the superimposed signals, whereby a set of separation observers are not introspectable and thus cannot serve

easily as models for automatic musical transcription

* Manuscript received 1990January 29;revised 1990June or signal separation systems.
21. In orderto putthecurrentworkintoperspective,the
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narrative portion of this paper begins with a review of may occur during shared rests); level imbalances be-
the approach and methods used in this investigation, tween voices may be present; noise ofvarious kinds may
The separation procedure is described next, followed hinder the detection process, and so forth. In the fre-
by a critical evaluation of the results and a concluding quency domain the partials (overtones) of the various
section concerning the successes, failures, and future voices will often overlap, preventing simple identifi-
prospects of this research, cation of the spectra of each voice. Further, the fun-

damental basis of most music is time, so some means

I REVIEW OF APPROACH AND METHODS to segment the recording into time intervals and to
correlate the parameters from instant to instant must

Previous work related to the signal separation problem be concocted.
considered here has been primarily in two areas, 1)
separating the speech of two people talking simulta- 1.2 Research Limitations on the Scope of the
neously in a monaural channel (also called cochannel Separation Problem
speech separation) [1]-[6] and 2) segmentation and/ Because the musical signal separation problem is so
or transcription of musical signals [7]-[10]. The goal complex, the initial need for this investigation was to
of the speech separation task is to improve the intel- simplify the conditions. Thus the range of input pos-
ligibility of one talker by selectively reducing the speech sibilities was limited by the following restrictions:
of the other talker, while for music separation the goal 1) The recordings to be processed may contain only
is to extract the signal of a single instrumental line (or two separate, monophonic voices (musical duets).
to produce printed musical notation) directly from a 2) Each voice of the duet must be harmonic, or nearly
recording, so, and containa sufficientnumberof partials so that

a meaningful fundamental frequency can be determined.
1.1 Separation of Speech and Music 3) The range of fundamental frequencies for each

The cochannel speech and musical signal separation voice must be restricted to nonoverlapping ranges, that
problems share some common approaches. Both tasks is, the lowest musical pitch of the upper voice must be
have typically been formulated in terms of the time- greater than the highest pitch of the lower voice. Note
variant spectrum of the individual signal sources. This that a duet that does not meet this requirement in toto
is appropriate because one possible basis for separating may still be processed if it can be divided manually
additively combined signals is to distinguish the fre- into segments obeying this restriction.
quency content of the individual signals, assuming a 4) Reverberation, echoes, and other correlated noise
linear system, sources are discouragedsince, in effect, theyrepresent

additional "background voices" in the recording and
1.1.1 Cochannel Speech Separation violate the duet assumption.

The cochannel speech separation work reported to Despite these seemingly severe restrictions, the re-
date typically relies on some assumptions about the maining difficulties are still nontrivial: how to separate
spectral properties of speech. For voiced speech (such the partials of the two voices when the spectra overlap;
as vowel sounds), the short-time magnitude spectrum how to determine whether zero, one, or both voices
contains a series of nearly harmonic peaks corresponding are present at a given point in time; how to track each
to the fundamental frequency and overtones of the voice reliably when one is louder than the other; and

speech signal. With two talkers, the composite spectrum so on. Moreover, success with a particular duet does
contains the overlapping series of peaks for both voices, not automatically guarantee success on every other duet
The common approach has been somehow to identify example. In fact, projects of this sort can rapidly fall
which peaks go with which talker and to isolate them. into the trap of ad hoc, special-purpose techniques to
The separation itself has been attempted using comb solve a particular problem, only to find another problem
filters to pass only the spectral energy belonging to created.
one of the talkers (or notch filters to reject one of the The system developed during this research project
talkers), identification and separation of spectral features was not necessarily intended for real-time operation.
(peaks) belonging to one of the talkers, and even ex- Thus the algorithms were implemented in software on
traction of speech parameters appropriate for use in a general-purpose computer. This approach has the ad-
regenerating the desired speech using a synthesis al- vantages of extensive software support, relative ease
gorithm. No separation process specifically for unvoiced of testing, and rapid debugging cycles.
speech (such as fricatives or noise) has been reported
in the literature. 1.3 Fundamental Research Questions

The major goal of this investigation was to demon-
1.1.2 Segregation of Voices in Ensemble Music strate the feasibility of automatic composite signal de-
Recordings composition using a time-frequency analysis proce-

Identification of pitches, rhythms, and timbres from dure. This problem can be stated as two fundamental
a musical recording is not a trivial task in general. The questions.
difficulties are formidable. The ensemble voices may 1) How may we automatically obtain accurate esti-
occur simultaneously or separately (and no voices mates of the time-variant fundamental frequency of
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each musical voice from a digital recording of a duet?

2) Given time-variant fundamental frequency esti- 1.4.2 Application of Monophonic Methods
mates of each voice in a duet, how may we identify to Duets

and separate the interfering partials (overtones) of each For the duet separation task, the difficulties of mono-
voice? phonicpitchdetectionarecompoundedby the presence

Question 1) treats the problem of estimating the time- of two competing signal sources. There is no certainty
variant frequencies of each partial for each voice. As- that a monophonic pitch detection scheme can handle
suming nearly harmonic input signals, specification of multiple simultaneous signals. For example, the auto-
a fundamental frequency identifies the partial component correlation and optimum comb methods are used to
frequencies of that voice. Conflicting (coincident) par- identify periodicites in the input signal by searching
tial frequencies between the two voices can then be for a delay lag To that maximizes the integrated product
identified by comparing the predicted harmonic series (autocorrelation) or minimizes the summed absolute
of the two duet voices, value of the difference (optimum comb and AMDF).

Question 2) involves the fundamental constraints on The fundamental frequency estimate is given by fo =
simultaneous time and frequency resolution. The desire 1/To. However, identification of the extremum corre-

for high-resolution frequency domain information re- spending to the "best" To is not trivial because the
quires observation of the input signal over a long time search functions contain many subextrema, that is, the
span. However, long observation spans often result in functions are not unimodal. Also, delay lags of an in-
an unacceptable loss of time resolution by averaging tegral number of waveform periods will show similar
out any spectral changes during the observation interval, extrema in the autocorrelation or AMDF, leading to
Thus the analysis system must somehow cope with this possible octave errors.
inherent uncertainty in determining the best time-versus- The problem of octave errors is a common obstacle

frequency representation for the input duet signal, to many pitch detection algorithms, including harmonic-
Note that question 2) can be treated separately from based methods. The difficulties are particularly no-

question 1) if the time-variant fundamental frequency ticeable for instruments with strong resonances such
pair for the duet can be obtained by some manual means, that certain upper partials (or ranges of partials) contain
For example, a duet synthesized with known funda- much more energy than the lower partials. In situations
mental frequencies (a priori frequency information) where the search range is known to be limited to less
can be used to evaluate a preliminary separation al- than an octave (often the case with speech) the octave
gorithm. Thus the two fundamental questions can be error problem can be reduced. Musical melodies, on
treated initially as separate problems if desired, the other hand, often span a larger fundamental fre-

quency range. Moreover, when two sources are present
1.4 Research Question 1: Duet Frequency in the input signal, interactions between the numerous

Tracking pairs of partials cause additional difficulties, which

The duet separation methods considered in this paper make most monophonic pitch detection methods im-
require good estimates of the fundamental frequency practical for direct application to the duet case. For
of each voice at all times. This information could come this reason, a new scheme for duet frequency tracking
from an accurate musical score, some manual means was developed for this project, as described in Sec. 2.

of tabulation, or an automatic frequency tracking sys-
tem. However, even if a musical score is available, 1.5 Research Question 2: Time-Frequency

musicians seldom play music with an exact, one-to- Analysis
one correspondence with the printed information. The second research question treats the general
Manual methods can be quite reliable, but are extremely problem of identification and separation of the spectral
tedious and time consuming. Thus automatic methods components in a musical duet. Specifically, some useful
are of primary interest in this paper, representation of the duet signal simultaneously in the

frequency and time domains must be obtained. Useful
1.4.1 Common Methods for Pitch Detection parametric models of musical instruments are usually

Fundamental frequency tracking is often called pitch not known, so any parametric spectral analysis method
detection or pitch extraction. Numerous reports de- will require estimation of an unwieldy number of pa-
scribing algorithms for monophonic pitch detection have rameters. Thus the approach for this investigation was
been published, including the cepstrum method [11], to use a standard nonparametric spectral estimation
autocorrelation [12], the period histogram and other method, the short-time Fourier transform (STFT).
harmonic-based methods [13[, [14], the optimum comb

and average magnitude difference function (AMDF) 1.5.1 Review of the Short. Time Fourier
[15], [16], and methods based on linear prediction [17], Transform (STFT) Analysis
[18]. Also, time-domain methods to determine pitch The STFT has been used widely in the analysis of

periods by zero crossings, peak detection, or clipped time-varying signals, such as speech and music [19]-
waveform analysis have been developed. Unfortunately [24]. The STFT takes a one-dimensional time-domain
no single method for pitch detection has been found to signal (amplitude versus time) and produces a two-
be reliable for arbitrary input signals, dimensional representation (amplitude versus frequency
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versus time). This can be expressed for time-sampled Then Eq. (2) becomes
signals in discrete form [25]:

L-I

X(n, k) = e -j2_nk/L E x(rt) e -j21trk/L (4)ac

X(n, k) = _ w(n -- m)x(m)e -j2xmk/L , (l) r=0
m_-oc

which can be recognized as the DFT of 2(n) multiplied

in which: x(m) is a signal defined for any sample time by a linear phase shift term.
m, w(m) is a low-pass impulse response (window) If we choose the window function w(q) to be zero
function defined for any m, L is the number of equally for q _> L/2 and q < -L/2, and noting that 0 _< r <
spaced frequency samples between 0 Hz and the sample L, the expression for £(n) is nonzero only under the
rate (or 0 to 2_ normalized radian frequency), and following conditions on p and r:
X(n, k) is the discrete STFT of x(m) at every sample
time n at normalized radian frequency 2_rk/L. p = 0 and {0 _< r _<L/2}

This equation is called the STFT analysis equation
because it describes the STFT in terms of the input or
signal x(m). With time-variant input the STFT can be
thought of as providing a series of"snap shots" of the p = - 1 and {L/2 < r < L}
signal spectrum obtained over some chosen time in-

giving

w(-r)x(n + r) , for0 _< r _< L/2
_(n) = (5)

w(L - r)x(n - L + r) , forL/2 < r < L .

Thus we can compute X(n, k) by generating the inter-
terval, mediate signal 2(n), performing the DFT (using an

The infinite sum in the STFT analysis equation is FFT algorithm, if desired), and compensating for the
actually finite in practice because the window function linear phase term e -j2_rnk/L. This process is depicted
w(m) is typically chosen to be real, with even symmetry in Fig. 1.
about the origin (noncausal, zero phase), and nonzero In considering Eq. (4) we see that the formal definition
only for a finite range of points centered about the of the STFT requires a series of overlapping DFTs to
origin (see Harris [26] for a description of various win- represent x(n) at every time n. This overlap may seem
dow functions), unnecessary, considering that the original signal can

For computational efficiency it is often useful to ex- be reconstructed exactly from the inverse transforms

press the STFT analysis equation in the form of the of concatenated nonoverlapping segments, that is, the
discrete Fourier transform (DFT) so that a fast Fourier discrete Fourier transform is perfectly invertible. This

transform (FFT) algorithm can be used to perform the observation would be useful and reasonable if the only
summation calculations. Using a change of variables

m = n = pL + r and exchanging the order of summation,
the analysis equation can be written in terms of blocks

L samples long, _w(n-m)

X(n, k) = e -j2wnk/L E _ w(-pL '_ i v \ / , x.,' \_ ? _ '
r=0 p=-_ E : ',.-./ m=n v m

- r)x(n + pL +' r)e -j2_pk e -j2_rk/L

(2)
y(m)i

Defining __=
oc E m

_(n) = _] w(-pL - r)x(n + pL + r)e -j2xrpk <
p= -vc

(3a)

Fourier Transform I _Xn(k )I
or since e -j2xpk : ! (for p and k integers), we have

Fig. 1. The Fourier transform viewpoint of STFT. A segment
of the digitzed signal x(m) is multiplied by the reversed and

x(n) = _ w(-pL - r)x(n + pL + r) . (3b) shifted window function w(n - m). The resulting signal
allp y(m) is processed by the discrete Fourier transform.
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interest was in obtaining an identity analysis/synthesis copies of the window function w(n) reversed and shifted
procedure. However, for the duet separation problem by multiples of the hop size R. If the summation is
(and for other tasks) it may be useful to interpret and constant and exactly equal tOL for all s and n, the OLA
modify the frequency-domain representation of the process can exactly invert the STFT. Fortunately it can
signal, which generally requires knowledge of the signal be shown [27] that any low-pass window function w(n)
for every frequency index kat every time n. Fortunately, which is band-limited to frequency B = 1/2R satisfies
in practice the STFT can be performed every R samples the equation
of the input signal instead of every sample because the

1

output sequence for a particular frequency index k is _'_ w(sR - n) -- _ W(0) = constant (11)band-limited by the low-pass window function used in alls
the analysis. This allows the STFT to be resampled at

a lower rate than the signal sample rate. The frame where W(.)is the Fourier transform of w(.). Of course,

spacing R can be called the analysis hop and must cdr- any time-limited window cannot be completely band-
respond to a rate 1/R at least twice the bandwidth of limited, so the hop size R must often be chosen based

the analysis window in order to meet the Nyquist cri- on some performance criterion. The scaling factor L
terion, in this case applied to resampling the STFT. can be included implicitly by scaling the time-domain
Choosing a smaller analysis hop size has the desirable window function prior to analysis, if desired.

effect of improving the time resolution of the sampled The identity property of the STFT (the original signal
STFT, while choosing a larger hop reduces the frame can be resynthesized perfectly) implies that the analysis
rate, and thus the storage requirements and computation data contain all the information present in the original
load. This resolution/computation tradeoff must be ad- signal. This attribute is important because it theoretically
dressed to fit the needs of a given situation, allows processing to occur in either the time or the

The STFT analysis equation, including an analysis frequency domain; the most convenient representation
hop,is givenby canbechosen.

X(sR, k) = e -j2=sRk/L DFT{2(sR)} (6) 1.5.3 A Variation of the STFT Concept:
MQ Analysis

where s is an integer. McAulay and Quatieri [28] proposed an analysis/
synthesis procedure for speech based on a sinusoidal

1.5.2 Review of the Short-Time Fourier representation. Their approach was to model speech
Transform (STFT) Synthesis waveforms as a sum of possibly inharmonic, time-

The synthesis equation corresponding to the STFT varying, sinusoidal components. The basic McAulay
analysis equation, Eq. (4), can be expressed as an and Quatieri (MQ) signal model assumes a priori that
overlap-add (OLA) procedure, each segment of the input x(n) consists of a finite number

of sinusoidal components J. Each component may have
L-I

2(n) -- _ _ X(m, k) e+j2=nk/L (7) arbitrary amplitude ak, angular frequency tek, and phase
all m k=O Pk' Thus this model indicates

J

and for the analysis hop case of Eq. (6), x(n) -- Z ak COS(tokn + Pk) · (12)
k=l

L-1

._(n) = _ _ X(sR, k) e+j2'nk/£ (8) Like the STFT, the MQ process assumes that the pa-
all s k=0 rameters ofx(n) may be time-variant, so the amplitude,

frequency, and phase parameters must bc updated fre-
The summation over k in Eq. (8) is almost the inverse quently to remain a valid representation of the input
DFT ofX(sR, k), namely, signal.

L-t Accordingto the original MQ analysisalgorithm,
the input signal is segmented into blocks of length N_'_ X(sR, k) = Lx(n)w(sR - n) . (9)

k=0 (possiblyoverlapping).Eachblockis windowedwith
an appropriate low-pass window (as in the STFT ana-

Combining Eqs. (8) and (9), lyzer), and its discrete Fourier transform is computed
via an FFT algorithm. For each DFT the magnitude

_(n) = _ Lx(n)w(sR - n) (10a) spectrum is calculated, and all peaks in the spectrum
alls are identifiedsimplyby searchingfor groupsof three

adjacent spectral samples where the magnitude's slope
or changesfrompositiveto negative.McAulayandQua-

_(n) -- x(n)L _'_ w(sR - n) . (10b) tieri assume that each peak may be attributed to the
alls presence of an underlying sinusoidal component during

the current segment of the input signal. Once all the
The summation in Eq. (10b) is the sum at time n of peaks are determined, the complex (real, imaginary)
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spectrum is used to identify the phase information for the time-varying sinusoidal components.
each peak. Finally, the amplitude, frequency, and phase Once the peak matching process on the current frame
parameters for each peak are stored in a data structure, is complete, the procedure is repeated for the subsequent
The number of peaks chosen in each data frame can be data frames. The final output database consists of chains
limited by 1) choosing a fixed number of peaks or 2) of peaks, or tracks, which trace the behavior of the
imposing some amplitude threshold. The MQ procedure underlying sinusoidal components comprising the dig-
is depicted in Fig. 2. nal. An example is shownin Fig. 3.

One difficulty in the peak identification procedure
is due to the limited density of frequency points resulting 1.5.4 MO Synthesis
from the DFT. Indeed, the actual frequency of an un- Synthesis from the MQ model can be accomplished

derlying sinusoidal component may lie between the via a simple additive procedure , where each of the J
frequency samples of the DFT. This limitation can be components is regenerated by a sinusoidal oscillator
reduced by increasing the density of the DFT frequency with amplitude, frequency, and phase modulation ap-
samples by means of a longer zero-padded DFT, and plied according to the analysis model parameters.
by using an interpolation method on the magnitude However, extra care is required to "unwrap" the phase
spectrum itself [29]. parameterdue tothe inherent rangeambiguity of theprin-

The analysis and peak identification process is re- cipal value through the Fourier transform [arg (y) =
peated for successive frames of the input signal. As arg (y + 2xq)].
mentioned previously, the spacing R between the start- Each frequency track is used to control a sinusoidal

lng points of adjacent frames (the hop size) is chosen oscillator whose amplitude, frequency, and phase are
as a tradeoff between the computation expense asso- modulated in such a way that they exactly match the

elated with a small hop and the loss of time resolution measured values from the analysis at the frame boundary
due to a large hop. The hop size can also be selected times and change smoothly between frames. Linear
according to the frequency domain sampling criteria interpolation has been found to be adequate for the
described previously for the STFT analyzer. If desired, amplitude values but the frequency and phase values
the hop size and analysis block length can be changed require more careful treatment [24], [28], [29].
adaptively to follow changes detected in the input signal. The continuous-time frequency and phase functions

In most practical cases the signal spectrum presented are incapable of fully independent variation because
to the MQ analyzer varies considerably with time so they are related by the time derivative. The problem
that the number of detected components and their fre- becomes one of choosing a phase interpolation function
quencies will, in fact, change from frame to frame, whose slope between a pair of linked peaks (instan-
For this reason a matching procedure is performed to taneous frequency) matches the measured frequency at
connect components (peaks) from frame [i] with cor- the frame boundaries and whose phase corresponds to
responding ones from frame [i + 1], thereby tracking the measured phase value unwrapped to provide a

smooth frequency function. A cubic phase function

Inputsignal,x(n) has been found to provide satisfactory results.
f'_ f_ The MQ process can be extended to allow a wide

f_ _ FX ,-, . I / [ _ range of signal analysis interpretations [30]. Forex-

_J _jJ _J V v_ _ \Vn ample' the peak-matching and sm°°th-phase interp°-
lation methods are useful for splicing and editing sound
segments without clicks or pops [31]. Also, the fre-

d quency tracks obtained from the analysis step can be
t Frame0 t scaled for shiftingpitch withoutchangingthe evolution

t Frame1 t of the sound with respect to time. Similarly, time com-
pression and expansion without pitch change, filtering,

t Frame2 t smoothing, and other manipulations can be accom-
...etc. plished within the MQ model [32].

For each frame:

__ _.5.5 MQ Analysis/Synthesis Results

FW _---_' DFT _-- Magni_ ] In many informal experiments accompanying thisindow - PickPeaks project, the MQ process was applied to isolated musical

J[ tones, speech, singing, polyphonic music. With
and

careful listening, the synthesis output was sometimesStore
in found to be perceptually distinguishable from the orig-

MQFormat inal signal. In particular, the character of noiselike
components of the input signal was often altered in the

Fig. 2. McAulay-Quatieri (MQ) analysis procedure. The synthetic sound, presumably due to an inadequate
input signal x(n) is segmented into overlapping "frames," characterization of the noisy material by the sum-of-
which are windowed and the DFT is computed. The peaks
in the magnitude spectrum of each frame are identified and sinusoids MQ model [33]. On the other hand, this at-
stored, tribute of the MQprocedureshowssomepotentialfor
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noise reduction of recordings, particularly if a careful more closely than the resolution of the analyzer will
choice of thresholds is made for the peak-picking step "collide" and appear as a single, smeared peak in the

of the analysis. For the most part, the synthesis was magnitude spectrum. However, the colliding harmonic
not found to be "better" or "worse" than the original, frequencies can be predicted from the fundamental fre-

only distinguishable. This informal result is encouraging quency pair, thereby providing a means to deduce the
because it indicates that the MQ model retains the es- contribution of each component to the composite spec-

sence of the original recording and, therefore, we may trum. Thus accurate estimates of the fundamental fre-
conclude that the information necessary for separating quencies in each frame are vital to the success of this

duets is present in the MQ analysis data. Further, the procedure.
convenient data representation of the MQ procedure
retains many of the useful features of the STFT. 2.1 A New Duet Frequency-Tracking Approach:

Two-Way Mismatch

2 DESCRIPTION OF SEPARATION PROCEDURE The interpolated FFT method used in the MQ analysis
provides samples of the signal spectrum at points equally

The duet separation approach considered in this paper spaced in linear frequency. In other words, the uncer-
requires estimates of the fundamental frequency of each tainty associated with identifying the frequency of a
voice. The pair of fundamental frequencies are used particular spectral peak is constant at all frequencies.
to determine the spectral energy distribution of the For example, a fixed resolution of, say, 2 Hz represents
duet: if each voice is harmonic (one of the research a significant fractional error at lower frequencies. The

assumptions), the composite magnitude spectrum should greater fractional resolution at higher frequencies im-
contain peaks at each harmonic frequency. Because of plies that the frequencies of the upper partials of a
the inherent frequency selectivity limitations in the signal can be used to improve the estimate of the lower
analysis, harmonics of the two voices which are spaced partials and fundamental frequencies of the harmonic
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Fig. 3. MQ signal representation of a tenor voice with vibrato. (a) Frequency versus time. (b) Same data, but frequency
versus amplitude versus time.
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signal, mismatcherror function will not, in general,be the
For example, consider a sequence of spectral corn- only local minimum.

ponents: {110,220,330,440} Hz (harmonics of a 110- In the current implementation the search procedure
Hz fundamental). However, due to the 2-Hz resolution first repetitively calculates the error values for a fre-
limit the measured sequence could actually be {108, quency pair with the upper voice frequency fixed, and
222, 328, 442} Hz. Simply choosing 108 Hz as the the lower voice frequency increasing from the minimum
fundamental results in a predicted harmonic sequence of the user-supplied low-frequency range to the max-
of {108,216,324,432}, corresponding to a difference imum in semitone increments. When a local minimum
sequence between the prediction using 108 Hz and the is detected using the semitone increments, the region
measured sequence of {0, 6, 4, 10} Hz or, in relative ofthe minimum is processed iteratively with adecreas-
terms, {0, 2.7, 1.2, 2.3}%. Note that if the "correct" ing frequency increment to refine the true estimate of
fundamental frequency, 110 Hz, is chosen, the resulting the minimum location. Note that the initial semitone
error sequences are {2, 2, 2, 2}, or {1.9, 0.9, 0.6, steps do not constitute the final resolution of the pro-
0.45}%. Thus the actual harmonic sequence should be cedure: the iterative search improves the estimate,
the one with the smallest total mismatch error when thereby allowing for frequency tracking of vibrato,

compared to the measured sequence, glissandi, nonstandard tunings, and so on.
The frequency estimation task in the context of this Once the entire low-frequency range is processed

paper is to choose a pair of fundamental frequencies and the overall minimum is obtained, the search pro-
which together minimize the mismatch between the cedure continues for a frequency pair with the lower
predicted partial frequencies (harmonics of the two voice frequency set to the "best" frequency obtained
fundamentals) and the observed partial frequencies in the first step, and the upper voice frequency increasing
(from the MQ analyzer). The mismatch error is cal- in semitone steps across the high-frequency range. The
culated as the sum of weighted, squared normalized resulting global minimum pair for the entire frame is
differences between each predicted partial frequency saved.
and the nearest measured partial frequency and between In practice this global search is only performed several
each measured partial frequency and the nearest pre- times per second of the input signal. On the frames
dieted partial frequency. Note that the mismatch error between the global search frames, the search is restricted

(predicted to measured) may be different from the re- to a semitone range ( ---2.5% of each fundamental fre-
verse mismatch error (measured to predicted). The fre- quency). If the global search turns up a better pair of
quency differences are normalized by dividing the fre- frequencies outside the semitone range, the tracking
quency difference by the predicted partial frequency, process must back up to the preceding global search
An empirically derived amplitude weighting function frame and check the intervening frames to isolate the
is applied to emphasize the contribution of stronger frame at which the change occurred. By choosing the
partials, whose frequency estimates are presumably period between global searches to be less than an ar-
more accurate. The mismatch weighting rules (from bitrary minimum note duration, no frequency transitions
best match to worst match) can be summarized: (for example, note changes) will be missed. This ap-

l) Missing a large amplitude partial by a small fre- preach uses the assumption that the frequency pair will
quency difference

2) Missing a small amplitude partial by a small fre-
quency difference Predicted Pair: 100 Hz, 150 Hz; Actual Pair: 98 Hz, 151 Hz.

3) Missing a small amplitude partial by a large fre- PREDICTED _ PREDICTED

quency difference cc_a:_mm to CC_P(:XqENIS' to CGWKX,II_IS

4) Missing a large amplitude partial by a large fre-
_100 _ 98 I, [_100

quency difference. _s0-- ,, _s_ , |_s0--
This "two-way mismatch" calculation has two ad- 200 ,. 196 I_ r 200

294_ . /

vantages: 1) it favors frequency choices which correctly 300-"- 302_ [ 300---predict the measured components and 2) it penalizes
400 -__ _ 400

frequency choices which predict components that are 4so-- ... 453 _ ! 4,50--
not found in the set of measured partials. An example soo ___ 49o , [.s00

of the two-way mismatch calculation for a particular soo-- _ s88--._ --r 600--
pair of estimated frequencies is given in Fig. 4. 700 soo'"_ [ 700

The two-way mismatch procedure is provided with 7so-- _, 755 · 7S0--
tWO nonoverlapping frequency ranges in which to con-
centrate its search. This frequency range information 'To simulate real data, not all components are given.

is supplied by the user from prior knowledge of the Fig. 4. Example of two-way mismatch (TWM) error calcu-
expected input signal. The task of the frequency tracker lation. Center column contains the peaks obtained from MQ
is to identify the pair of estimated fundamental fre- analysis of one frame of input signal. Arrows indicate two-
quencies which result in the minimum two-way mis- way nearest-neighbor error calculation for predicted set of
match error. This must be performed as an iterative duet harmonics at one step in iteration. Note that two-wayerrors (predicted to measured and measured to predicted)
search procedure because the global minimum of the are not the same.
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often remain roughly constant for many analysis frames to estimate the various parameters involved).
during each musical note. The computation savings of 3) If an accurate signal model is known for each
this method is, of course, governed by the degree to voice, colliding partials can be handled by synthesizing
which this assumption holds for a particular duet. artificial amplitude and frequency functions to replace

If the analysis data were noise free and the partials the corrupted data. If an adequate model is not known,
of the two voices did not interact, we might only attempt some form of interpolation or spectral templates may
to maximize the number of correct predictions (the be used. This process should ideally be inaudible, that
coverage) of the measured frequencies, then choose is, we wish to retain the timbre and performance char-

the highest octave for a given level of coverage. How- acter of the performance.
ever, any spurious frequencies due to noise or inter-
ference between the duet voices could cause this estimate 2.2.1 Separation Strategy h Linear Equations

to be extremely sensitive to small variations. The two- Solution

way mismatch approach lessens the impact of these If the input signal is perfectly harmonic during one
errors by including "bad" predictions as an unfavorable analysis frame, its short-time spectrum is a frequency-

parameter in the error calculation. Of course, the pres- domain convolution of the analysis window spectrum
ence of background sounds, such as the resonation of and a series of weighted impulse functions at frequencies
undamped strings in a guitar or harp recording, could corresponding to the harmonic partials of the signal.
seriously degrade the usefulness of the two-way mis- This convolution produces a short-time spectrum con-
match method. This situation has been avoided (con- sisting of overlapped replicas of the window function

veniently) in this study by the a priori assumptions spectrum centered at each harmonic frequency and
made in Sec. 1.2. scaled by the amplitude of the harmonic component at

that frequency. The amplitude and phase of the short-
2.2 MO Formulation for Separation Task time spectrum at a particular frequency is the complex

At first glance the MQ sum-of-sinusoids model ap- sum of all the overlapped window spectrum contri-

pears to be an ideal representation for the duet separation butions at that frequency. This "crosstalk" can be min-
problem because the sinusoidal components of each imized (but not eliminated) by appropriate choice of
voice should appear as independent, harmonic tracks the analysis window function.
in the MQ analysis data. By this naive reasoning, the The spectral width of the main lobe of the analysis
two voices could be separated and resynthesized by window spectrum is usually chosen so that no spectral
identifying the pair of fundamental frequencies and overlap occurs between adjacent harmonics for the
simply choosing which frequency tracks went with lowest fundamental frequency of interest (closest har-
which voice. Unfortunately the limited frequency res- monic spacing). However, the spectral collisions typ-
olution of the MQ analyzer causes any closely spaced ically present in an analyzed duet involve two eom-
components to "collide" and appear as a single, broad ponents (one from each voice) which may be spaced
peak instead of two separate peaks, more closely than the no-overlap condition. Assuming

In order to resolve spectral collisions between the a good analysis window with very low sidelobe levels,
partials of different voices we must ascertain the con- it is reasonable to consider only the contributions from
tribution of each voice to the composite information the two colliding components and neglect the contri-
observed in the short-time spectrum. Given that pre- butions of the other spectral components. Since the
dictions of the two fundamental frequencies are known shape of the analysis window spectrum, the spacing of
(using the two-way mismatch procedure), it is possible the two colliding frequency components, and the spec-
to identify conflicting partials by comparing the pre- tral values at the two frequencies are known--and ne-
dieted harmonic series of the two voices. Partials with glecting all contributions except the two colliding com-

spacing greater than the resolution limit of the short- ponents--a pair of linear equations can be determined
time analysis can simply be segregated into groups for the two unknown quantities: the actual amplitude
belonging to one or the other voice of the duet. Partials of the two spectral components without overlap.
with spacing less than the resolution of the analyzer Denoting the two colliding frequencies by 001 and
will appear as corrupted data due to the crosstalk be- 002, the known composite complex short-time spectra
tween the two partials, by G(000 and G(002), the analysis window spectral

Three approaches for separating closely spaced magnitude by W(001- 002)[normalized, W(0)-- 1],

components are considered, and the desired complex component spectra by Gl(co0
1) A set of linear equations can be specified and and G2(002), we have

solved for the contribution of each windowed sinusoid

to the observed complex spectrum in the vicinity of Gl(co0 = al - W(00 - col)
the conflict.

2) The amplitude modulation (beats) and frequency G2(00) = et2 -- W(00 - 032)

modulationfunctionsdueto thecloselyspacedpartials (13)

may be used to calculate the amplitudes of the colliding G(001) = Gl(001) + W(001 - 002)G2(002)

partials (assuming the amplitudes and frequencies re-
main relatively constant for a period of time sufficient G (002) : G2(002) -F W(001 -- 002) Gl(001)
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where Otl and ct2 are the underlying amplitudes of the of the lower frequency partial is max(Al, A2), while
colliding partials, if the amplitude maximumoccurs when the frequency

The unknown complex quantities Gl(co0 = al and is minimum, the lower frequency partial's amplitude
G2(co2) = et2 can be solved from this pair of equations is min(A1, A2).
[Eqs. (13) are complex, but the real and imaginary Successful use of component beating functions to

parts may be computed separately]. Thus estimates of solve the partial collision problem requires that the
the amplitude and phase of any pair of closely spaced duet voices contain no significant amplitude and fre-
partials can be obtained. A schematic representation quency fluctuations of their own. Long observation
of this process is depicted in Fig. 5. times may also be required to identify the best amplitude

Unfortunately the simple linear equations approach maximum and minimum since the beat period is in-
suffers from several deficiencies. First the "known" versely related to the frequency spacing of the colliding
quantities (the window spectral shape and the two col- partials. This probably eliminates the use of this strategy
liding frequencies) are really not known with great for notes with duration less than the beat period and
accuracy in practice because 1) the input signal is seldom for notes with significant vibrato, tremolo, or other
truly periodic, 2) the pair of linear equations becomes amplitude-frequency modulation.
singular (both equations become the same) as the fre-
quency between the components gets small, that is, as 2.2.3 Separation Strategy IIh Use of Models
W(col - co2)approaches unity, and 3) collisions between and Spectral Templates
two components with very different magnitudes can Separation strategies I and II require the colliding
amplify the effect of parameter errors and provide un- partials to behave in a "nice" manner, meaning that
satisfactory results for the lower amplitude component, their parameters remain relatively constant during the
In summary, the quality of the linear equations solution entire time interval of interest. Strict assumptions of
depends on the degree to which the signal assumptions this sort do not always hold true in the real world,
are met. however, and errors in the separationproceduremay

As noted, the linear equations solution becomes sin- be audible in the final result. Thus an alternative strategy

gular as the frequency spacing between colliding com- incorporating a priori knowledge of the characteristic
portents decreases. The frequency spacing of the col- behavior of the competing input signals must be de-
liding components (based on the two-way mismatch veloped. These signal "models" can be matched to the
fundamental frequency tracking data) can be observed composite duet signal in order to refine the separation
to determine whether the linear equations approach is results of strategies I and II, or to generate reasonable
applicable. If not, another separation strategy must be predictions of signal behavior to replace the uncertain
applied, datapresentduringspectralcollisions.

It should be noted that Danisewicz and Quatieri [34] Although signal modeling initially appears to be a

independently proposed a similar linear equations so- promising method for improved separation of cochannel
lution method (for cochannel speech) which includes signals, it requires solutions to numerous system design
the effects of all shifted window transforms, not just and implementation problems. Musical instruments are
the nearest two, as described here. They also provide generally extremely complex acoustomechanical or
an interesting interpretation of the frequency-domain electroacoustomechanical systems which defy simple
linear equation solution as an equivalent time-domain characterization by a small number of parameters. Some
least-squares viewpoint, preliminary work reported by Wold and Despain [35]

indicates that as many as 300 separate states must be
2.2.2 Separation Strategy Ih Analysis of Beating estimated to describe a single clarinet tone for iden-
Components

When the frequency separation of two partials be- G(co)=Gl(ro)+G2(w)
comes smaller than the resolution of the STFT analysis, _J
the MQ analyzer does not see two distinct peaks, but .....T

a single peak with amplitude and frequency modulation: G;((_)-_71the two components exhibit "beating." In other words, c,(o_)_al
the two colliding components appear as a single eom- ''2 --' G2((O2)=0'2
portent with sinusoidal amplitude modulation occurring _ G2(ro ) = a 2 ·W(ro - c02)

at a I_est frequency equal to the frequency difference
between the colliding components.

If the frequencies (col, 002)and amplitudes (Al, A2)
of the colliding partials remain constant for one or
more 'beat periods, the composite amplitude and fre-

quency functions can be used to estimate the amplitudes co_ co2
of the colliding components, as depicted in Fig. 6. The
maximum of the amplitude beat isA1 +A2, the minimum Fig. 5. Overlapped spectra for two closely spaced partials(real part). Solution by linear equations method identifies
is IAi -- A21. If the amplitude minimum occurs when amplitudes of two partials, given measured composite spec-
the composite frequency is a minimum, the amplitude trum (dotted line) and pair of partial frequencies.
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tification and separation. Even if a satisfactory model straightforward modeling concept might provide sat-
of the sound production properties of an instrument is isfactory results. The modeling method chosen was to
available, most recordings are made in reverberant determine a set of spectral templates for the voices of
surroundings or with some form of electronic signal interest. Each template describes a characteristic spec-
processing and equalization which alters the temporal tral envelope, that is, the relative amplitude of each
and spectral properties of the recorded signal. Further, partial in the spectrum of a constant musical note played
a model capable of synthesizing a sound simply per- by the instrument. The templates are normalized so
ceived to be a natural timbre may not be capable of that the amplitude of the strongest partial is unity. If
matching the performance characteristics of a particular several of the partials of the musical voice are uncol-
human musician. For these reasons the task of exactly lided, the template can be matched to the known partials
modeling a recorded musical instrument sound is quite and the collided partials can be estimated using the
difficult, templateas a look-uptable.

The preliminary modeling approach used in this in- The template algorithm can be described as follows
vestigation does not approach the level of sophistication (see Fig. 7). First the measured amplitude Qi of each
indicated by the preceding discussion. Instead, a simpler uncorrupted partial number i is obtained from the short-
approach was evaluated to determine whether a time spectrum. Next the total squared error between
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Fig. 6. (a) Time-domain beating waveforms for two closely spaced sinusoids given by x(t) = A_ cos (mit) + A2 cos (m2t).
(b) Instantaneous frequency functions for beating waveforms of 6(a).
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the Qi and the corresponding scaled template values, Finally, the estimated amplitude Qk of the corrupted
the GTi, is defined according to partial k is given by

J Qk = GTk . (16)
Etotal -- '_ (Qi- Gri) 2 (14)

i=1

i_k Hidden in this simple description is the complex task
of choosing the appropriate template to use in a given

where partial number i -- k is corrupted by a spectral situation--and even whether a template-based approach
collision. This error expression is minimized with re- is reasonable in general. The use of several isolated
spect to the template amplitude scaling parameter G, "target" notes from an instrument in order to derive
giving templatesbelies the true nature of the analysistask.

Most real musical instruments exhibit both intentional

{_ l/{i._k 1 /2t and unintentional variation from note to note and from

G -- QiTi T style to style during a performance. Indeed, these nu-
i=l · (15) ances convey the skill and emotion of the performer,
i'_k representing the essence of a good musical performance.
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Fig. 6. (Continued)
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-Retaining the expressive quality of the two competing 3) If two partials are separated by less than 50 Hz
voices is a goal of the signal separation problem, but but more than 25 Hz, the linear equations solution
a small set of templates is unlikely to capture these (strategy I) is applied.
subtleties. 4) If twopartials are separatedby less than 25 Hz,

For these and other reasons, the experiments using the beating analysis (strategy II) is attempted. However,
the template strategy were limited to a small number if the collision is found to be less than two or three
of templates obtained from a studio recording of a so- beat periods (T < 2/If_- f21),estimates of the beating
prano singer. Unfortunately the results obtained in those parameters are not reliable. In this case the spectral
experiments were not sufficiently encouraging to merit interpolation solutions (strategy II1) are applied.
further investigation. Thus the use to templates was In the case where the fundamental frequency of one
reluctantly abandoned for the examples considered in voice is an integer multiple (such as an octave) of the
Sec. 3. other, all harmonics of the upper voice coincide with

Instead we investigated another simple spectral repair partials of the lower voice. Extraction of the upper
strategy applicable when all the Spectral components voice may become impossible when this occurs. The
except one are uncollided in a particular frequency lower voice, on the other hand, may have at least some
range. If the spectral envelope of the voice is relatively of its partials uncorrupted because the partials of the
smooth, or if the fundamental frequency is low, the upper voice will be spaced by two or more times the
corrupted partial's amplitude can be estimated by in- harmonic spacing of the lower voice. In this situation
terpolating from the surrounding uncorrupted partials, the lower voice spectrum may allow reconstruction using
as sketched in Fig. 8. the separation strategies considered in the preceding.

Note that the upper voice might be recoverable if the
2.2.4 Multistrategy Approach spectral envelope of the lower voice's partials happens

In the current implementation the choice of the ap- to be confined to a frequency range below the partials
propriate separation strategy for a pair of colliding par- of the upper voice so that no (or few) collisions occur.
tials is as follows (using a Kaiser STFT analysis window The case of unison duets, although implicitly excluded
with 6-dB bandwidth of 40 Hz). from this study by the nonoverlapping range assumption

1) The two fundamental frequencies of the duet (ob- of Sec. 1.2, would be the most difficult to handle using
tained using the two-way mismatch procedure) are used the current approach. Separation of unisons might only
to generate the harmonic series of the two voices. The be possible through the use of differing vibrato char-
spacing between all adjacent partials is calculated, acteristics or other subtle pitch differences between the

2) If a partial is at least 50 Hz away from every other two voices.
partial, the component is considered uncorrupted and
no collision repair occurs. 2.2.5 Further Considerations

The primary difficult with a multistrategy approach
is handling transitions between strategies as the co-

1 Spectral Template channel input signals vary. Because the duet voices

__ are generallyindependent,a notefromonevoicemay

start or stop while a note from the other voice is sus-
tained. Thus the spectral collision situation may change

0 rapidlyasthe voicesenterandexit.A similarproblem
Frequency occurs during glissando or vibrato: spectral collisions

Collisionsin spectrum may vary even during an ostensibly sustained note.

< COLLISION

I, 1Frequency ._

Pa]rtia'amp'itude

Partial amplitudes '__ /'-"x

G _......._X[ estimated by template estimated usingE linear interpolation

Frequency I
Fig. 7. Example of possible use of spectral templates to resolve 2 f f 4 f 5 f 6x_f 7 f 8 f 9 f
collisions. Normalized template is scaled to minimize error
betweentemplate function andmeasured(uncollided)partials. Frequency
Collided partials are filled in by template value at each har-
monic frequency. This approach proved ineffective due to Fig. 8. Example of use of spectral interpolation to resolve
the difficulty in constructing and selecting template functions, collisions.
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Simply switching from one separation strategy to an- changing-frequency voice contains six partials with
other as the spectral collisions vary may result in audible somewhat arbitrary amplitude weightings {I, 0.5, 0.33,
discontinuities in the output signals due to estimation 0.25, 0.2, and 0.266}. Both voices have equal peak
differences among the separation methods. The solution waveform amplitudes. The signal was designed to test
to this problem involves a layer of continuity compar- the collision detection/correction ability of the sepa-
isons between the results of the different separation ration procedure and the behavior of the frequency
strategies, particularly when a change occurs in the tracking process for piecewise constant and rapidly
collision status, changingfundamentalfrequencypairs.

Synthetic example duet 2 (Fig. 10) contains one voice

3 RESULTS AND EVALUATION generated using phase modulation and the other voice
generated with the same amplitude for all partials. Phase

3.1 Testing and Evaluation Outline modulation was chosen as a difficult case since phase-
The testing approach for this project involves both modulated tones can contain partials with distinctive,

acoustically generated (real) signals obtained from independent amplitude envelopes. Note that boundaries
musical recordings and artificial signals generated by of the two voices occur at different times to allow eval-
software. The real signals provide examples of practical uation of the transition capability of the frequency
interest, while the synthetic signals help to define per- tracking and separation procedures.
formance limits using known parameters. Most of the
processed duet segments were 20 s or less in duration 3,1.2 Acoustic Input Examples

to conserve disk storage and processing time. Four rep- The first recorded duet (Fig. 11) is a short segment
resentative results (two artificial inputs, two real inputs) of"Duo Number 1 for Clarinet and Bassoon" by Ludwig
selected from the many test inputs are described next. van Beethoven, obtained from an analog LP record

album. The example was chosen to test the system in
3.1.1 Artificial Input Examples the presence of typical reverberation, surface noise,

Synthetic example duet 1 (Fig. 9) contains one voice and other distortion.
with a constant fundamental frequency of 800 Hz for The second recorded duet (Fig. 12) is a segment of
a duration of 1 s and another voice with a linear fun- a tuba and trumpet duet from an analog LP recording
damental frequency ramp from 120Oto 880 Hz over a of "Sonatina for Trumpet and Tuba" by Anthony lan-

duration of 1 s. The constant-frequency'vo!ce contains naccone. This example was chosen to check the tracking
six harmonic partials with equal amplitudes, while the and separation procedures for widely separated voices

and in the presence of background noise and reverber-
ation.

Voice l: Fundamental frequency: 800 Hz

6 equal amplitude partials In the introduction to this paper, one of the stated
assumptions was that only nonreverberant recordings

Voice 2: Fundamental frequency: 1200 to SS0Hz should be processed. However, due to the pervasive6 partials with amplitude weighting:

_., 0.5, 0.33, 0.25, 0.2, 0.266 presence of reverberation in recorded music, it was

Voice 1 and voice 2 have the same peak amplitudes, important to determine whether this restriction could
be violated without compromising the overall quality

_" of the separation procedure.

1200__ 3.2 Evaluation of Two-Way Mismatch (TWM)
l l00 __ Duet Fundamental Frequency Tracking Using

F lQ:Il _ Synthesized Duets
r RI] _ TherawMQanalysisandTWMfrequencytrackinge

e Ri]. resultsfor artificialexample1 are shownin Fig. 13.
u Thepartialsofthetwovoicesareclearlyvisibleinthee?00.
n outputof the MQ analyzer,and the TWMalgorithm
c 6t30- has no difficultyin followingthe gross characteristics

SOO. ofthe twofundamentalfrequencies.However,a specific1

n _!3. examinationof thefundamentalfrequencytraceforthe
upper voice identifies occasional short-term errors (all

H3O0.
z less than 1%). Comparing the frequency trace with the

_0. MQanalysisoutputrevealsthat the frequencyerrors
100- occur at points where partial collisions take place, dis-

rupting the harmonic series of the voice. The TWM

0- I I I I [ I I I I I algorithm has some immunity to the collision problem
0.0 0.1 0.2 0.3 0._ 0.S 0.6 0.7 0.8 0.S 1.0 due to its "best match" criterion, but the amplitude and

I I M[ [ S [ C ) 0¢aq1 of 1 frequency fluctuations present during a partial collision

Fig. 9. Artificial duet test example 1. Synthesis frequencies still cause some uncertainty.
and partialamplitudes. The MQ and TWM results for artificial example 2
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are shown in Fig. 14. The TWM tracking results match rithm "looks" for two sets of harmonic peaks in every
the true values quite well during portions of the duet frame of the MQ analysis data. During solo passages
where both voices are present, but the tracker output (or between staccato notes), only one set of harmonic
fluctuates when only one voice is present. This result peaks is found in the MQ output and the TWM algorithm
is less surprising when one considers the duet assump- must switch to a solo tracking strategy. The result is a
tions built into the TWM algorithm, that is, the algo- tendency to skew slightly at the transistions between

Voice2: __ I Y _ I g_ 7 7

F

(a)

Voice 1: Phase mdulation s_thesis,
carrier/modulator ratio = 1:1, index = 4

Pek _plitude = 15000

Voice 2: 7 eq_l _plitude partials
Pek _plitude = 10000

1%00.

1200, IF L.._nr

_.1000.
u

gmo,
C
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1
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Ht*O0.
Z

I

0 I I I I I I I I
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(b)

Fig. __.Arti_cia_duet.(a)Testexamp_e2_musica_sc_re.(b)Testexamp_e2_frequencyspeci_cati_n.

'_-_- I I_l "'' _ja_s_oo. r' 4 I I I
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Fig. 1 1. Real duet test example 1: Ludwig van Beethoven, "Duo Number 1 for Clarinet and Basson."
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Fig. 12. Real duet test example 2 (hand transcription): Anthony Iannaccone, "Sonatina for Trumpet and Tuba."

L
1
n
e
a
1"

31_o-
m

r

u
d
e

o- j _
F
r le

Q -
u
e -

n
c

_ j

i n

H
z 1.0

s_e 0. 0 T i m e i n S e c o n d s

(a)

1800 -
1IO0-

F 1000- ._
r 900-e
a 800
u

e ?OD.
n
e 600

SO0
l
n LfO0

H 300
z

200

100 -

0 I I I I I I I I I I

O.O 0.1 0.2 0.3 0._ O.S 0.6 0.? 0.8 0.9 1.0

T I M E ( S F C I CHRN I of 1

(b)

Fig. 13. Artificial duet example 1. (a) Raw MQ analysis. (b) TWM duet frequency tracking results.
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duet and solo modes. Several methods to overcome

this deficiency are under development. 3.3 Evaluation of Voice Separation with Known
The following conclusions may be drawn concerning Fundamental Frequencies

the performance of the TWM frequency tracking al- The separation procedure was first supplied with the
gorithm based on these and other examples, known fundamental frequency data for the synthetic

1) The TWM procedure works very well for duet duets (instead of the TWM output) in order to determine
signals with constant or slowly changing fundamental the best-case performance of the isolated system.
frequencies and similar partial amplitudes. The results for artificial test example 1 are shown in

2) The tracking process has difficulty interpreting Fig. 15. Note that even with the a priori frequency
the input signal when staccato notes occur in one or information the separation process is not perfect. The
both voices or during other transitions between the amplitude discrepancy (amplitude "bumps") between
duet and solo paradigms, the extracted voices of Fig. 15 and the constant partial

3) The frequency tracking process may be impaired amplitudes of the original voices can be traced to one
if the list of component frequencies supplied by the of the underlying assumptions of the separation process,
MQ analyzer is seriously corrupted by noise, a level namely, that the peaks in the short-time spectrum are
mismatch between the tWO voices, or some other deg- simply shifted and scaled copies of the Fourier transform
radation, of the analysis windowfunction. This assumption is
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Fig. 14. Artificial duet example 2. (a) Raw MQ analysis. (b) TWM duet frequency-tracking results.
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exactly correct only if the sinusoidal components corn- in every input frame, the linear equation solution strut-

prising the signal do not change their J?equency or egy is not a truly valid approach for this example.
amplitude during the interval covered by the analysis The main effect of rapidly changing frequencies ob-
window. The fundamental frequency of the glissando served in the short-time spectrum is convolutional
voice in this example changes from 1200 to 880 Hz broadening of the peak corresponding to the changing
(D = 320 Hz) in 1 s, or 0.32 Hz/ms. The MQ analysis frequency component, or even FM sidebands in extreme

window used in this example is 25.6 ms in duration, cases. The increased frequency extent of the spectral
yielding a frequency change during the window interval peak (particularly for upper partials) increases the
of 8.192 Hz for the fundamental. Also note that because likelihood of a collision between the broadened peak

the overtones are multiples of the fundamental fre- and any adjacent components, requiring extra care in
quency, the frequency of the second partial changes the separation process. The underlying issues here is
16.384 Hz during the window interval, the third partial the fundamental time-bandwidth limitation of short-
changes 24.576 Hz, and so on. Thus the assumption time analysis techniques.
of constant partial frequencies--and therefore constant The second artificial duet contains several notes where
spectral window shape--is clearly violated in this case. the voices are in octave alignment but with little spectral
Unless an explicit prediction of the short-time spectrum overlap. These results are shown in Fig. 16.
is made for every swept-frequency component identified Interpretation of the separation results for these and
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Fig. 15. Separation results for artificial duet example 1 using a priori frequency information.
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other examples indicates the following conclusions.
1) The voice separation process is most effective for 3.4 Evaluation of Voice Separation with TWM

time intervals in which the fundamental frequencies of Frequency Tracking
both voices remain constant. The complete automatic duet separation procedure

2) The separation results may not be perfect--even was applied to many example duet recordings. The
in the best-case situation of a priori frequency knowl- results of the artificial duet examples were found to be
edge. The discrepancies are primarily attributable to very similar to the results with a priori frequency
the time-bandwidth limitations of the short-time Fourier knowledge, indicating that the TWM tracker performed

transform used in the analysis, well using the simple artificial inputs.
3) Reliable separation requires frequency estimates The real duet test examples obtained from analog

of each partial to be within a few hertz of the true value record albums contain appropriate levels of reverber-
in order for accurate collision prediction and repair. If ation. This reverberation is a source of trouble because
the estimate of the fundamental frequency of a voice the duet separation procedure assumes that no more

is in error by a small amount, sayf¢ Hz, the frequency than two sets of harmonic partials are present in a single
error for the Jth partial will be Jfe Hz. Thus the best- analysis frame. At the transition from one note to the
case situation of known frequencies may not always next, the frequency tracker may 1) begin to track the

be attained in practice, new note, 2) continue to follow the reverberation "tail"
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Fig. 16. Separation results for artificial duet example 2 using a priori frequency information.
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of the previous note, or 3) hop back and forth between tails of each note trailing over into the next note due
the two choices in some unpredictable way. In the first to partial collisions. The reverberation tails may often
case the reverberation tails of the released note may be a desirable part of the separation output if they blend
collide with the partials of new (or sustained) notes, with the new notes in a natural manner. A less benign
causing interference that is not included in the two- effectis the presence ofone or more reverberated partials
voice separation process and, therefore, not identified from one voice in the "separated" output of the other

and corrected. The second case misses the attack portion voice.
of the new note, particularly if the new note starts at The separation results for the second acoustic duet
a lower amplitude level than the reverberated note. (tuba and trumpet, Fig. 12) are depicted in Fig. 18.
When the third case occurs, the separation results are The sharp attacks on each note of the trumpet voice
generally poor. enabled the frequency tracker to follow the musical

The separation results for the first acoustic duet ex- line with high accuracy and crisp transitions. The tuba
ample (clarinet and bassoon, Fig. 11) are shown in line was more difficult to track. This was primarily
Fig. 17. The surface noise from the analog record album due to corruption of the closely spaced low-amplitude
source did not impair the performances of the TWM tuba partials by stronger colliding partials of the trumpet.
and separation procedures. However, the sound quality The separation results could easily by improved by
is degraded by the presence of audible reverberation manual editing of the TWM output, but that would
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violate the definition of an "automatic" separation sys- 1) The spectral partials of one voice in a typical duet

tern. The separated signal quality was reasonably.good collide with the partials of the other voice. The sepa-
for the trumpet voice, but the separated tuba voice ration procedure determines the contribution of each
contained occasional whistles and bleeps as low partials colliding partial to the resulting amplitude and frequency

from 'the trumpet collided with the upper partials of interaction observed in a short-time spectral analysis.
the tuba and were misinterpreted as tuba components. 2) Level imbalances between the two voices of a

duet may make the parameters of the weaker voice

4 CONCLUSION difficult to ascertain. The frequency tracking and voice
separation procedures supply estimates of any missing

This research project developed novel approaches information using knowledge of previous and subse-
to two basic problems in duet signal separation: esti- quent analysis frames.
mation of the two fundamental frequencies of a duet 3) The voices of a duet may occur simultaneously,

from the composite monaural signal, and separation one at a time during solo passages, or not at all during
of two voices given the pair of fundamental frequencies, shared rests. The voice separation process determines

the current voicing paradigm and applies the appropriate

4.1 Summary of Findings separation method.

The separation procedure may be described as fol- 4) For recordings containing reverberation or other
lows. characteristicsnot strictlywithintheguidelinesset forth
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for each data frame. The frame hop was set to a fixed was used to prevent misinterpretation of window side-
increment of 128 samples (6.4 ms), corresponding to bands as signal components. Each peak value from the
one-fourth or one-eighth of the window length. Note short-time spectrum was identified and stored for use

that the preemphasis of the input signal could be re- in the frequency tracking and voice separation proce-
moved at this point by frequency-domain deemphasis, dures.
if necessary. After separation, a time-domainsignal was synthe-

The MQ analysis procedure (see Sec. 1.5.3) was sized directly from the linked-list data structure using

applied to every frame of the STFT. The spectral peak an additive procedure. Finally, the synthesized signal
selection process was limited in two ways: 1) a user- was deemphasized using the inverse of the preemphasis
specified minimum peak amplitude was used as a global filter, converted from 32-bit floating point to a 16-bit
noise floor, and 2) a floating threshold level 50 dB integer, and passedthrough a digital-to-analogconverter
below the maximum spectral peak in a given frame for evaluation.
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