

Group	# Released in year 1	# Recaptured in year 2
High flow	50	30
Average flow	50	30
Low flow	50	30

Conclusions?

What are the Rates?

Return rates

•
$$S \times p = 30/50 = 0.6$$

- How many combinations of S & p can result in observed data?
 - Infinite # of combinations!
 - Combinations might differ by group

Group	# Released in year 1	# Recaptured in year 2
High flow	50	30
Average flow	50	30
Low flow	50	30

Group	Survival Rate	Capture probability	R(i) X S(i) x p(i)
High flow	.90 (45/50)	.667 (30/45)	50 x .9 x .667 = 30
Average flow	.80 (40/50)	.750 (30/40)	50 x .8 x .750 = 30
Low flow	.70(35/50)	.857 (30/35)	50 x .7 x .857 = 30

Group	Survival Rate	Capture probability	R(i) X S(i) x p(i)
High flow	.90 (45/50)	.667 (30/45)	50 x .9 x .667 = 30
Average flow	.80 (40/50)	.750 (30/40)	50 x .8 x .750 = 30
Low flow	.70(35/50)	.857 (30/35)	50 x .7 x .857 = 30

Cormack-Jolly-Seber Models

Mark & Mark & Mark & Mark & Mark &

Resight Resight Resight Resight Resight

$$\mathbf{1} \xrightarrow{\phi_1} \mathbf{2} \xrightarrow{\phi_2} \mathbf{3} \xrightarrow{\phi_3} \mathbf{4} \xrightarrow{\phi_4} \mathbf{5} \xrightarrow{\phi_5} \mathbf{6} \xrightarrow{\phi_6} \mathbf{7}$$

$$p_2 \qquad p_3 \qquad p_4 \qquad p_5 \qquad p_6 \qquad p_7$$

φ - apparent survival rate

 $ightharpoonup \varphi_i$ = probability that a marked animal in the study population at sampling period i survives until period i+1 and remains in the population

 $ightharpoonup 1-\varphi$ represents both animals that died and animals that left the population (emigration)

 \triangleright In general, $\varphi < S$, where S = true survival rate

 p_i is the probability that a marked animal in the study population at sampling period i is captured or observed during period i

1. Every marked animal present in the population at sampling period i has the same probability p_i of being captured or resighted

- Use covariates such as age, season, etc. to handle possible heterogeneity
- Heterogeneity typically produces small bias in $\hat{\phi_i}$
- Bias is typically negative

- 2. Every marked animal present in the population at sampling period i has the same probability φ_i of survival until sampling period i+1
 - Use covariates such as age, season, etc. to handle possible heterogeneity
 - Bias tends to be positive but ... transient behavior tends to cause negative bias
 - Transients = animals that are released and then move to locations that are never subject to trapping
 - Transients effectively permanently emigrate: φ =0

3. Marks are neither lost nor overlooked and are recorded correctly

- 4. Sampling periods are instantaneous (in reality they are very short periods) and recaptured animals are released immediately
- If not true, then induce heterogeneity in φ
- Animals caught early in a long period of trapping (e.g., 2 months) may have lower φ than do animals caught at the end
- Consider how much mortality occurs during period of recapture

- 5. All emigration from the sampled area is permanent
 - Produces extreme heterogeneity in p
 - *p=0* for temporary emigrants
 - If emigration is temporary and random,
 - Estimates of φ = unbiased
 - Estimates of p = prob(stay in study area) * prob(capture if in study area)
 - If emigration is temporary and not random, can get negative bias in ϕ

6. The fate of each animal with respect to capture and survival probability is independent of the fate of any other animal

- If not true, don't have as much data as you think you do
 - Pick models that are overly complex
 - Overly confident in estimates (Cl's too narrow)