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WILD 502 - Estimating Abundance for Closed Populations with    

Mark-Recapture Methods 
 

Reading: Chapter 14 of WNC book (especially sections 14.1 & 14.2) 

 

• Estimating N is much more difficult than you might initially expect 

• A variety of methods can be used: 

o Census – assume count all animals in the population 

o Sample plots – assume count all animals on plots 

o Transect methods – estimate detection probability as a function of distance 

from a line transect or point to animals 

o Capture-recapture – estimate capture probability – our focus 

• Or, can abandon estimation and use an index – often done, seldom tested 

• Essentially comes down to dealing with counting animals and relating the count to 

the number in the population somehow. 

 

Basic concept or model that is often relevant when estimating N: 

 

Expected Count = N x p,  where N = pop’n size   &    p = prob of detection 

 

Estimator: ˆ
ˆ

C
N

p
  

 

That is, you go out and count animals and want to relate that count (C) to N. 

Thus, can see that rigorous estimation of p is key to good estimation of N. 

 

• Census – assume p = 1 for the entire study area 

 

A closed population has no births, deaths, immigration, or emigration during the study 

period.  Thus, N (a state variable) really is a logical focus for a population study during 

such a period! And rate variables such as survival are not of interest with closure. (We’ll 

see how to work with both closed and open periods soon). 

 

 

Background: 

 

Ball and urn studies: 

 

Reach in to an urn with 100 white balls and remove a sample (n1 = 30).  Mark the balls in 

the sample and replace them.  Take another random sample (n2 = 36) and count the 

number of marked (m2 = 10) and unmarked balls (u2 = 26). 

 

We expect the proportion of marked balls to total balls in the population to be the same as 

the proportion of marked and unmarked balls observed in our sample. 
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This is the Lincoln-Petersen Estimator for 2 trapping occasions (see pg 290 of WNC) 

 

30 36ˆ 108
10

N


   

 

You can re-arrange this equation to see that ˆ
ˆ

C
N

p
 . 

 

Consider 1n to be the count statistic and estimate 𝑝̂1 =  
𝑛1

𝑁̂
⁄ =

𝑚2
𝑛2

⁄  
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Probability distribution for 2 occasions: 
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Where qi = 1-pi, r = n1 + n2 - m2 = number of unique animals captured in study, & N - r is 

the number of animals never caught. 

 

Closed-form MLEs: 

 

• 2
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2

ˆˆ /
m

p n N
n

   

• 2
2 2

1
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Bias-adjusted estimator: 1 2

2

( 1)( 1)ˆ 1
1

n n
N

m

 
 


; unconditionally unbiased 1 2n n N  . 

 

 𝑣𝑎𝑟̂(𝑁̂) =
(𝑛1+1)(𝑛2+1)(𝑛1−𝑚2)(𝑛2−𝑚2)

(𝑚2+1)2(𝑚2+2)2  
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Example: N = 250, p1 = 0.6, p2 = 0.3.  

Expected frequency for each encounter history 

 

Encounter history Expected 

frequency 

Probability  

11   45 
1 2 250 0.6 0.3Np p     

10 105 
1 2(1 ) 250 0.6 (1 0.3)Np p      

01   30 
1 2(1 ) 250 (1 0.6) 0.3N p p      

00 (not seen)   70 
1 2(1 )(1 ) 250 (1 0.6) (1 0.3)N p p        

 

• n1=150 

• n2=75 

• m2=45 

• 2
1 1 1

2

ˆˆ ˆ45 / 75 0.6    or ... / 150 / 250 0.6
m

p p n N
n

       

• 2
2 2 2

1

ˆˆ ˆ45 /150 0.3    or ... / 75 / 250 0.3
m

p p n N
n

       

 

Assumptions: 

1) Population is closed to additions (birth & immigration) and to losses (death & 

emigration) 

2) Marks are not lost or overlooked or misread by researchers 

3) All animals are equally likely to be captured in each sample (this is the 

assumption that we will almost always need to relax).  We’ll relax it to be capture 

probabilities are appropriately modeled. 

 

 

For most real biological applications, we need to: 

1) Consider possible heterogeneity in capture probability,  

2) Carefully consider the concept of closure, and  

3) Use more than 2 occasions. 

 

Parameters of interest: 

1) N – population size 

2) D – population density (possible though not our focus) 

3) p, c – capture & recapture probabilities 
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Statistics: 

1) nj - # captured on the jth occasion, j = 1, 2, …, t. 

2) n. – total # of captures in the study =  
1

n

j
j

n


  

3) uj - # of new animals captured on the jth occasion, j = 1, 2, …, t. 

4) fj – capture frequencies = # individuals captured exactly j times in t days of 

trapping. 

5) Mt+1 –# of different individuals caught in entire study. 

6) Mj – number marked animals in the population at the time of the jth sample, Note 

that M0 = 0. 

7) M. – Sum of the Mj, not including Mt+1. 

8) mj - # of marked animals captured in the jth sample. 

9) m. – sum of the mj. 

10)  t – the number of trapping occasions in the study. 

11)  { }X  = the set of possible encounter histories in the study. 

 

The probability distribution for the set of possible encounter histories under constant 

capture probability is: 

 

.
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

 

 

The MLE for constant capture probability is: 

 

.
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To help you see what’s going on with the multinomial coefficient, consider : 

3 animals with 11 EH, 

2 animals with 01 EH, &  

3 animals with 10 EH. 

Thus, t = 2, n1 = 6, n2 = 5, and n. = 11. 

11 11!
( , | ) (1 )

3! 2! 3!( 8)!
t NN

L N p X p p
N

    
  

 

 

Substituting values of N and p into the equation allows estimation of the most likely 

estimates for these 2 parameters given the data set and the model.  Of course, this model 

is simple and makes the restrictive assumptions that p = c and is constant across 

occasions & animals.  As we’ll discuss in class, much of the work that has been done for 

this class of models has focused on easing this assumption and modeling variation in p.     
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Basically, 3 broad sources of variation are considered possible: 

1) temporal variation in capture probability (‘t’), 

2) behavioral responses to trapping (‘b’): p c , and 

3) heterogeneity in capture probabilities for different individuals (‘h’). 

 

 

By considering all possible combinations of these 3 factors, 8 models are obtained: M(0), 

M(t), M(b), M(h), M(tb), M(th), M(bh), and M(tbh).  MARK also has a variety of other 

models that use a conditional likelihood approach in which N is not actually considered 

as a parameter. This is done by conditioning on only animals encountered (r).  This can 

be handy because it lets us bring individual covariates to bear. 

 

NOTE: Individual covariates are typically not used in closed models though some 

approaches do allow their use (see pages 300-302 in WNC book).  This is because, we are 

now estimating capture probability for all the animals in the population but don’t have 

covariate values for the animals that were never captured.  We can use group-level 

covariates, which can be useful. And, if time permits we will discuss models that allow 

use of individual covariates. 

 

The figure below is from chapter 14 of CW, which was written by Paul Lukacs, and 

shows the various models that exist. We’ll focus on the full likelihood models for p and c.  

We’ll discuss the ideas of mixtures and mis-identification if time allows later in the 

semester. 
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Likelihoods for some of the basic models: 

To give you a better feel for how the parameters are estimated in the various models, here 

are the likelihood equations for M(t), M(b), and M(tb). 

 

M(t) (t+1 parameters): 

1
1

!
( , | ) (1 )

! ( )!

j j

j

t
n N n

j j
j

t

N
L N p X p p

X N M
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


 

 

If t=2, the MLE for N for M(t) is: 1 1 2

2 2

2

ˆ n n n
N

m m

n


  , i.e., the Lincoln-Petersen estimator 

 

 

M(b) (3 parameters):  

 

As noted on page 299 of your textbook, in the behavioral response model, capture 

probability can vary as a result of previous capture such that p  c, and the response can 

be trap happiness (c > p) or trap shyness (p > c).  

 




    



    
 
 
 

 

 
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A noteworthy property of this model is that the recapture information is used only in the 

estimation of c (a nuisance parameter).  That is, recaptures don’t provide information 

with respect to estimation of p or N.  Thus, once M(b) has been identified as appropriate, 

the estimation is done as if the study were a removal study.  Thus, it is critical in this type 

of study that “depletion” of unmarked animals is achieved, i.e., the number of new 

animals captured on each occasion should decrease with each successive occasion.  If this 

does not occur sufficiently, the model can fail to produce results.   Valid estimates are 

obtained if: 

1

( 1 2 ) ( ) 0
t

j j
j

t j n m


       

Failure can readily occur if you have temporal changes in p such that few individuals are 

caught early in the study and many new individuals are caught late in the study.  

Individual heterogeneity in p causes underestimation of N with M(b): the magnitude of 

bias depends upon the number of animals that are essentially uncatchable. 
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M(h) (N+1 parameters): 

As estimation is not possible under the general formulation where every animal has its 

own p (p1, p2, …, pN = {pi}), it is useful to think of {pi} as a random sample (size of 

sample is N) coming from some probability distribution F(p), where each pi falls between 

0 & 1.  A maximum likelihood estimator is possible if the particular family of 

distributions of which F(p) is a member is specified.  One possibility is the Beta 

distribution (the beta distribution is specified by 2 parameters (alpha and beta) and hence, 

the name.   The beta distribution is a continuous distribution with all of its non-zero 

probability between 0 and 1. 

This is an appealing idea that is useful for conceptualizing how the p’s might be 

distributed in the population, but has not proved useful in practice. A variety of 

alternatives exist (See figure above from chapter 14 of CW by P. Lukacs) including 

mixture models, as well as several approaches available in Program CAPTURE, which 

can be called from within Program MARK.   

 

Note: Models containing heterogeneity are probably appropriate for many studies.  Thus, 

it is worth understanding the concept and knowing some of the ways you can obtain 

estimates for M(h) models. 

 

M(bh) (2N + 1 parameters- each animal has its own p and a c):  

The estimator of N for this model is based on the first-capture data (similar to what’s 

done with M(b), i.e., a removal estimator).  But, with heterogeneity more must be done; 

we need a generalized removal estimator.  With heterogeneity, you expect the average 

probability of first capture to decrease with each occasion & you expect the most rapid 

decrease over the first few occasions.  On the first occasion, no animal has been caught 

before so the average p for j=1 is high relative to p6. Why? Because by occasion 6 most 

of the animals that are easy to catch have already been caught! So, the trick to estimation 

is to see if you can fit the data using only a few average p’s.  The idea is to fit a sequence 

of increasingly general models to the average value for the values of pj and to use the 

simplest model that fits. 

 

Step 1: Evaluate the fit of using a single average p for all ocassions 

 

1 2 3 ... tp p p p   , this is the same as M(b) 

0 0.2 0.4 0.6 0.8 1
0

1

2

3
2.803

0

dbeta x 3 7( )

1.10.1 x

The beta dis tribution is a continuous distribution with all of its 

nonzero probability between 0 and 1.

Beta distribution with:  

  alpha=3, 

  beta=  7 
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Step 2: If the model on the previous step doesn’t fit, generalize & evaluate again. 

 

1 2 3 ... tp p p p    

 

Step 3: Generalize more as needed: 

 

1 2 3 ... tp p p p    

 

Etc. Etc.  

 

Now that you’re not trying to fit a p for every animal in the population, you CAN build 

these models in MARK.  This is very useful because for models in MARK we can 

compare models with our typical AIC procedures.  In lab this week, you’ll see how to 

build each of the models described in the steps above. 

 

Okay, we won’t go over the other models in any more detail.  But, I hope this 

introduction to the models along with readings has given you a decent idea of the key 

concepts of estimation for these models.  Also, realize that there is a solid body of 

literature available on this topic.  Finally, if you are working with this model type in your 

research, you will need to become more familiar with some of the more complex models 

and the attributes of their estimates.  In lab, you will become familiar with how to: (1) 

produce estimates for all models except M(tbh) and (2) conduct simulations that evaluate 

estimator performance under different sampling conditions. 

 

As I think you can surmise, it is best if you can be justified in using simpler models. 

Thus, you need to consider ways of having as few factors as possible affect the capture 

probabilities in your studies.  In terms of heterogeneity, with the models we are reviewing 

,you are limited in your use of individual covariates.  That is, you can only use covariates 

that can be entered using the design matrix, e.g., covariates that apply to a group of 

animals, e.g., trapping effort on each occasion, sex, size class, etc.  Breaking the data up 

by group covariates, e.g., sex, size class, etc., is a method that can be used to reduce 

heterogeneity within each group. Of course, it also means that you will need to have 

adequate data for estimation for each group! And, you can work to learn about other 

approaches such as Huggins Models listed under “Conditional Likelihood” on the right 

side of the conceptual diagram of Closed Models in Chapter 14 of CW. 

 

 

Over-Parameterized Closed Captures Models 

 

As nicely explained in section 14.3.1 of the CW Chapter by P. Lukacs, when a model is 

specified in Program MARK with unidentifiable p estimates, the estimates of N are just 

Mt +1. Conceptually, using a model with time-varying capture probabilities, here’s why.  

The estimate of population size is basically, 

1

1 2

ˆ
1 (1 ) (1 ) ...(1 )

t

t

M
N

p p p


     
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where the numerator is the number of individuals captured and the denominator is the 

probability that an animal was captured during the study (1 minus all the probabilities of 

not being captured!). That is, the probability of not being initially captured on the first 

occasion is 1-p1, not being captured on the second occasion is 1-p2, and so on to 1-pt. The 

product of these terms is the probability of never being captured during the study. Thus, 1 

minus this product is the probability of being captured at least once during the study. 

Therefore, the denominator is a “correction” to inflate the numerator.   

 

When a closed-captures model is over-parameterized, the last term in the denominator 

becomes zero because pt  is estimated as 1 (for reasons I won’t go into).  This makes the 

product portion of the denominator = 0 and the entire denominator = 1. This results in 𝑁̂ 

= Mt+1. When you use closed-captures modeling, you should always know what the 

value of Mt+1 is and be sure that your results for 𝑁̂ have not collapsed to the value of Mt+1 

because of over-parameterization. The value of Mt+1 is in the full output for each model 

and so very easy to check. 

 

Note: Program MARK actually parameterizes the likelihood in terms of the number of 

individuals never caught, f0, such that 𝑓0̂ = 𝑁̂ − 𝑀𝑡+1, where the notation f0 is a reference 

to the frequency, or count, of animals observed 0 times. Thus, MARK provides estimates 

of f0 in the real parameters list, and provides estimates of N under the derived parameters 

list. MARK uses a log link for f0, which keeps values of f0 between 0 and infinity. N is 

estimated as Mt+1 + 𝑓0̂, and so the variance for 𝑁̂ is the variance for 𝑓0̂ as Mt+1 is known. 

 

An additional problem with closed capture models in Program MARK is that often the 

number of parameters is not correctly computed because values of N̂  close to Mt+1 are 

assumed to not be estimated – causing an error in the algorithm to determine the number 

of parameters actually estimated, which causes errors in the resulting AIC value.  So, as 

always pay attention to parameter counts and adjust counts as needed. 

 
 


	M(bh) (2N + 1 parameters- each animal has its own p and a c):

