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The work we’ll do with design matrices is also very relevant to statistical analyses you do in other statistical
software. In R, ‘model.matrix’ is a useful tool for seeing the design matrices that are in play when you build
regression models.

Build a simple data frame

First, build a simple data frame with time as a factor and Time as a continuous, numeric variable. The two
variables look alike when you print the data frame. But, if you summarize the data, you see that they are
different.
d <- data.frame(time = factor(1:4), Time = 1:4)
d

## time Time
## 1 1 1
## 2 2 2
## 3 3 3
## 4 4 4

summary(d)

## time Time
## 1:1 Min. :1.00
## 2:1 1st Qu.:1.75
## 3:1 Median :2.50
## 4:1 Mean :2.50
## 3rd Qu.:3.25
## Max. :4.00
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Design matrices: different types

First, let’s look at treatment contrasts, which are the default type in R where the reference level (control) is
the first level of the factor variable, which is the level with the lowest number or letter among the values
provided. In Program MARK, you can set the reference level to be for any level of the factor you wish, e.g.,
you might have a specific year or group or site that you think of as a reference level. Note that the β̂′s
associated with the other columns (time2, time3, time4) are then intercept-adjustment terms.
model.matrix(~time, data = d)

## (Intercept) time2 time3 time4
## 1 1 0 0 0
## 2 1 1 0 0
## 3 1 0 1 0
## 4 1 0 0 1
## attr(,"assign")
## [1] 0 1 1 1
## attr(,"contrasts")
## attr(,"contrasts")$time
## [1] "contr.treatment"

We obtain an identity matrix if we remove the intercept from the model. Now each of β̂′s operates alone to
provide the estimate for each time period. Note: be aware that while removing the intercept makes sense for
a model that only includes factor variables, it should not typically be done if continuous variables are in the
model (see below).
model.matrix(~-1 + time, data = d)

## time1 time2 time3 time4
## 1 1 0 0 0
## 2 0 1 0 0
## 3 0 0 1 0
## 4 0 0 0 1
## attr(,"assign")
## [1] 1 1 1 1
## attr(,"contrasts")
## attr(,"contrasts")$time
## [1] "contr.treatment"

We can also request sums contrasts, for which the intercept provides an average and the other β̂′s represent
adjustments away from that average for each time period. These are quite useful if you want to know the
overall average and how far each time period’s value is away from that average.
model.matrix(~time, data = d, contrasts.arg = list(time = "contr.sum"))

## (Intercept) time1 time2 time3
## 1 1 1 0 0
## 2 1 0 1 0
## 3 1 0 0 1
## 4 1 -1 -1 -1
## attr(,"assign")
## [1] 0 1 1 1
## attr(,"contrasts")
## attr(,"contrasts")$time
## [1] "contr.sum"

Note: All three of the design matrices above would yield the exact same estimates of survival rates if applied
to the same dataset. They would, of course, yield different estimates of the β’s.
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We can also examine a design matrix with continuous covariates
model.matrix(~Time, data = d)

## (Intercept) Time
## 1 1 1
## 2 1 2
## 3 1 3
## 4 1 4
## attr(,"assign")
## [1] 0 1

Consider what it means to run a model with a continous covariate without an intercept. You’ve now declared
that you don’t want to estimate an intercept, which means that the intercept = 0. If the design matrix below
is for a logistic regression model of survival rate, you are declaring that when Time = 0, the survival rate is
0.5: exp(0+β1·0)

(1+exp(0+β1·0)) , which simplifies to exp(0)
(1+exp(0)) or 1

2 = 0.5. This will affect the estimates of all the β′s as
they are affected by what the intercept value is. It is very hard to imagine a situation where you would want
to do that!
model.matrix(~-1 + Time, data = d)

## Time
## 1 1
## 2 2
## 3 3
## 4 4
## attr(,"assign")
## [1] 1
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