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Testing GOF & Estimating Overdispersion 

 

When you read Chapter 5 of Cooch & White, you will find several important ideas. 

  

On page 5-1, you’ll read the following important point. 

“… a necessary first step to insure that the most general model in your candidate model set (see Chapter 

4) adequately fits the data. Comparing the relative fit of a general model with a reduced parameter model 

provides good inference only if the more general model adequately fits the data.” 

On page 5-6, you’ll read a quote by Gary White that presents an important idea that he presented in an 

article that appeared in the Journal of Applied Statistics in 2002 (volume 29, pages 103-106). 

 

 

• Your Most General Model Needs to Fit the Dataset 
o model is a benchmark when evaluating other models 

o evaluate via Goodness-of-Fit (GOF) testing 

o Diagnostics and tests are less developed for generalized linear models 
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• GOF 

o Observed versus Expected values 

▪ Work withi mij array if have enough data 

observed array 
11   2   0   0   0   0 

    24   1   0   0   0 

        34   2   0   0 

            45   1   2 

                51   0 

                    52 

expected values under CJS model, i.e., phi(t), p(t) given estimates and Ri 
11.0   1.9  0.1  0    0    0 

      24.1  0.9  0.1  0    0 

           34.0  1.8  0.1  0 

                45.1  2.8  0.1 

                     49.1  1.9 

                          52.0 

 

▪ In Program MARK, you can call Program RELEASE to look at breakdowns of data 

for CJS modeling 

▪ For many data types, such tests simply don’t exist 

▪ For known-fate, can do tests such as the Hosmer-Lemeshow test and more 

modern but related tests 

Model = 

12.351 0.497

12.351 0.4971

Length

Length

e

e

 

   

Predict Survival for each animal in study, bin animals by predicted values (e.g., based on length), and use 

those values to calculate the expected number of survivors and deaths in each bin.  Finally, compare 

observed and expected values for each fate in each bin, use the values to calculate a test statistic, and 

evaluate how probable such a test statistic value is under the null hypothesis that the model fits the 

data. It can be challenging to choose the binning, especially with multiple covariates, and expected 

values can get small, which can cause problems.    

 

Length (cm) Observed 
Survived 

Expected 
Survived 

Observed 
Died 

Expected 
Died 

<23.5 5 3.64 9 10.36 

23.25-24.25 4 5.31 10 8.69 

24.25-25.25 17 13.78 11 14.22 

25.25-26.25 21 24.23 18 14.77 
26.25-27.25 15 15.94 7 6.06 

27.25-28.25 20 19.38 4 4.62 

28.25-29.25 15 15.65 3 2.35 

>29.25 14 13.08 0 0.92 
Pearson X2 = 5.3 and G2 = 6.2.  df = 6 (counts for 8 levels predicted from 2 parameters).  
P(X2 > 5.3 or G2 > 6.2) when model fits the data is > 0.4. Conclude no problem with GOF. 
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• GOF 

o Deviance 

▪ Need a baseline model that fits perfectly: use saturated model 

▪ Saturated model often not in model list but can be conceived of 

• E.g., CJS with 3 occasions and 2 releases 

o 6 data points:  

lnL= 111 111 1 110 110 1 101 101 1 100 100 1 011 011 2 010 010 2[ ln( / ) ln( / ) ln( / ) ln( / ) ln( / ) ln( / )]Y Y R Y Y R Y Y R Y Y R Y Y R Y Y R            

EH 111 110 101 100 011 010 

Yi 6 46 21 427 20 80 

lnLsaturated model =  6 ln(6/500) + 46 ln(46/500) + 21 ln(21/500) + 427 ln(427/500) + 20 ln(20/100) + 80 ln(80/100) 

lnLsaturated model = -320.2945,  –2 lnLsaturated model = 640.589 

▪ Calculate deviance: (-2lnLfitted model) – (-2lnLsaturated model) 
 

• E.g., Deviance φ(t)p(t) = 642.41 - 640.589 = 1.8219 
 

▪ Deviance measures how far from perfect fit you are 

▪ Smaller deviance is desired, but how small is small enough? 

 

o Uses of Deviance in GOF 

▪ Likelihood Ratio Tests 

▪ Deviance/df 

• Assume distributed as chi-squared 
 

• P(X2>1.82), 1 df = 0.823 
 

• Assumption not reasonable unless have large sample sizes 

▪ Deviance residuals can be examined 

▪ Overdispersion and ĉ  = our focus 

 

• Overdispersion 

o Two sources that relate directly to our IID assumptions  

▪ Lack of independence 

▪ Heterogeneity in rates 

o Effect is to underestimate variances  

▪ Leads to overfitting 

▪ Point estimates tend to be unbiased 

o Estimating ĉ can be done for some (but not all) data types, e.g., CJS 

▪ Median c-hat procedure – example for Swifts data 
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 Value of true overdispersion used in simulation 
1 1.023 1.045 1.068 1.09 1.11 

ĉ < 7.683* 16 12 10 8 9 5 

ĉ > 7.683*  4 8 10 12 11 15 

Ppn. of sims with  

ĉ < 7.683* 
0.80 0.60 0.50 0.40 0.45 0.25 

 *For real data, dev/df = 7.683 

 

 

 

o QAICc for Model selection  
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o Variances are inflated by ĉ  

 

o More complex models are less supported as overdispersion increases 

Example of graphical 

output for another set 

of simulated data used 

to estimate 𝑐̂ 
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