
Calculating the likelihood value for a model and a dataset once you have the MLEs 

 

For lab 01, weekly survival was monitored for 284 duck weeks. The results were that 265 of those 284 
trials resulted in survival and 19 resulted in death. So, y = 265, n = 284, and the MLE for S in the S(.) 
model is y/n = 0.9330986. 

Let's work out the Likelihood and log-Likelihood values for this simple model. 

( ) 265 19(1 ) 0.9331 (1 0.9331 5.17686 31)y n yp p e−⋅ − = ⋅ − = −   

The logLikelihood is just the natural logarithm of that very small number or -69.73594 

Finally, -2lnL is 69.73594) 139 4( 192 . 7− ⋅ − =  and 139.42ln 2( ) 2 141.4719719AIC L k= − + = + =   

 

What about the S(temp) model?  Remember that now we find the MLE’s for the intercept and slope terms 
and then calculate the predicted value of S for each week.  That model estimated the following

0 10.7509420; 0.2611644β β= = .  From those, we can use each week’s temperature value to predict S for 
each week. And, from those values and the data (y & n), we can calculate the Likelihood, lnL, -2lnL, and 
AIC. Here, the product of the weekly values for contributions to the likelihood (values in the last column) 
is 1.57e-29, which yields -2lnL = 132.647. This model has 2 parameters (intercept & slope). Thus, AIC = 
132.647 + 2(2) = 136.647. 

  

 

 

Model=S(temp)

Week y n temp

predicted 
survival 
rate (p ) p^y (1-p) (̂n-y) (p^y)*((1-p) (̂n-y))

1 47 48 11 0.974011 0.29006912 0.025989 0.007538606
2 45 47 9 0.956951 0.13805198 0.001853191 0.000255837
3 39 41 8 0.944813 0.10926643 0.003045616 0.000332784
4 34 39 4 0.857612 0.00539381 5.85276E-05 3.15687E-07
5 28 32 6 0.910351 0.07208559 6.45925E-05 4.65619E-06
6 25 28 5 0.886629 0.0493801 0.001457144 7.19539E-05
7 24 25 10 0.966515 0.44157253 0.0334854 0.014786233
8 23 24 9 0.956951 0.36346805 0.0430487 0.015646827

product 1.57051E-29 Likelihood
ln(product) -66.32356693 lnLik
-2*LN(product) 132.6471339 -2lnLik



Below you’ll see the MARK output for 4 models applied to the black duck data. We’ve worked through 
how to get the -2lnL and AIC.  To get the deviance values, we need the -2lnL value for the saturated 
model, i.e., a model where the number of parameters equals the number of data points. For this simple 
known fate example with data from 8 weeks for 1 group of ducks, we have 8 data points (# of survivors 
[y] given that n birds were studied each week). The key is that without knowing individual characteristics 
of the birds, this is the most complex model we can fit and so it serves as our baseline.  In more general 
terms, S(g*t) is the saturated model for known fate if we don’t have individual covariates. With one 
group, this collapses to S(t). Notice that each model’s deviance value is simply the model’s -2lnL value 
minus the -2lnL value for the S(t) model.  

Given that you have seen how we work out MLE’s and the associated -2lnL and AIC values for a given 
model and dataset, I hope you understand where the values in the table below come from. To help you 
interpret the ΔAICc values, AICc weights, and model likelihood values that come from -2lnL and AIC 
scores, read the assigned pages in the Cooch & White book (Ch. 1 and pages 4-29 through 4-50) and the 
multi-model inference handout for today. Finally, ask questions if you have them!  

 

 

Model AICc Delta AICc AICc Weights Model LikeNum. Par Deviance -2log(L)
{S(Temp)} 136.6898 0 0.87172 1 2 0.6383 132.6471
{S(.)} 141.4861 4.7963 0.07923 0.0909 1 7.463 139.4719
{S(T)} 142.5427 5.8529 0.04671 0.0536 2 6.4911 138.5
{s(t)} 148.5325 11.8427 0.00234 0.0027 8 0 132.0089


