An m_{ij} array representation of European Dipper data for males.

Values indicate how many of the animals were *first* recaptured after release on occasion *i*.

Occ.	R(i)	j= 2	3	4	5	6	7 т	otal
1	12	6	1	0	0	0	0	7
2	26		11	0	0	0	0	11
3	37			17	1	0	0	18
4	39				22	0	1	23
5	45					25	0	25
6	48						28	28

E.g., $m_{12} = 6$ and $m_{13} = 1$ because 6 of the original 12 birds released on occasion 1, 6 were 1st seen again on occasion 2, and 1 was first seen again on occasion 3.

 1
 111110
 1;

 1
 111000
 1;

 1
 00000
 4;

 1
 00000
 1;

 1000000
 5;

The 6 animals from Release 1 that were first seen again on occasion 2 were re-released on occasion 2. Thus, $R_2 = 6 + 20 = 26$

1	1	1	1	1	1	0	1;	
1	1	1	1	0	0	0	1;	
1	1	0	0	0	0	0	4;	
0	1	1	1	1	0	0	1;	
0	1	1	1	0	0	0	1;	
0	1	1	0	0	0	0	7;	
0	1	0	0	0	0	0	11;	

Of the 26 birds released on occasion 2, 11 were 1st seen again on occasion 3, and the other 15 were never seen again.

The 1 animal from Release 1 that was 1st seen again on occasion 3 plus the 11 animals from Release 2 that were first seen again on occasion 3 were all re-released on occasion 3. Thus, $R_3 = 1 + 11 + 25 = 37$.

TOTOOOO	⊥;
111 <mark>1</mark> 110	1;
111 <mark>1</mark> 000	1;
011 <mark>1</mark> 100	1;
011 <mark>1</mark> 000	1;
0110000	7;
001 <mark>1</mark> 110	1;
001 <mark>1</mark> 100	4;
001 <mark>1</mark> 000	8;
0010 <mark>1</mark> 10	1;
0010000	11;

Of those 37 birds, 17 were 1st seen again on occasion 4 and 1 was 1st seen again on occasion 5.

As stated on page 421 of your textbook, right-hand column, and shown in Equation 17.4 and Table 17.4, probability distributions for the various encounter histories that are observed can be written using the $m_{i,j}$ statistics

$$Pr(m_{12}, m_{13}, m_{14} | R_1) = \frac{R_1!}{m_{12}!m_{13}!m_{14}!(R_1 - r_1)!} \times \left\{ (\varphi_1 p_2)^{m_{12}} [\varphi_1 (1 - p_2) \qquad (17.4) \right. \\ \times \varphi_2 p_3]^{m_{13}} [\varphi_1 (1 - p_2)\varphi_2 \qquad (17.4) \right\}$$

		Model Struc	ture				
Releases	Recapture period <i>j</i>						
period <i>i</i>	2	3	4				
R_1	$R_1\varphi_1p_2$	$R_1\varphi_1(1 - p_2)\varphi_2p_3$	$R_1\varphi_1(1 - p_2)\varphi_2(1 - p_3)\varphi_3p_4$				
R_2		$R_2\varphi_2p_3$	$R_2\varphi_2(1 - p_3)\varphi_3p_4$				
R_3			$R_3\varphi_3p_4$				