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Modeling known-fate data on survival – binomials & logistic regression 
 
Consider the following dataset: 
 

Week # 
Females 

# 
Died 

# 
Survived

Ppn 
Survived

(p*(1-p))/n se-hat 

1 48 1 47 0.979 0.00042 0.021 
2 47 2 45 0.957 0.00087 0.029 
3 41 2 39 0.951 0.00113 0.034 
4 39 5 34 0.872 0.00287 0.054 
5 32 4 28 0.875 0.00342 0.058 
6 28 3 25 0.893 0.00342 0.058 
7 25 1 24 0.960 0.00154 0.039 
8 24 1 23 0.958 0.00166 0.041 

TOTAL 284 19 265 0.9331 0.00022 0.015 
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S(t) – time variation; no pattern imposed 

S(.) – constant through time  
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Model = S(.) – Constant survival – all data are pooled 
 
MLE’s: S-hat = 0.933, se-hat = 0.015 
 
-2lnL = -2 x ln(0.933265 x 0.06719) = 139.47 
 

AIC = 139.47 + 2(1) = 141.47 
 

AICc = 139.47 + 2(1) + 2(1)(1+1)/(284-1-1) = 141.47+ ~0.014 = ~141.484 
 

Model = S(t) – Survival varies freely among weeks 
 
-2lnL = -2 x ln {[(0.979)47(1-0.979)1]  

         x [(0.957)45(1-0.957)2]  
         x [(0.951)39(1-0.951)2] 

          x [(0.871)34(1-0.871)5]  
                      x [(0.875)28(1-0.875)4] 
                      x [(0.893)25(1-0.893)3] 
                      x [(0.960)24(1-0.960)1] 
                      x [(0.958)23(1-0.958)1]} 
 
-2lnL = 132.01 
 

AIC  = 132.01 + 2(8) = 148.01 
 

AICc = 132.01 + 2(8) + 2(8)(8+1)/(284-8-1) = 132.01 + 16 + 0.52 = 148.53 
 

Likelihood Ratio Test 
H0: S(.) fits the data as well as S(t) 
 
X2 = -2ln[L(S.)/L(St)] 
     = -2ln[(5.17686E-31)/( 2.16094E-29)] 
     = -2ln[0.023956514] 
     = 7.463 
 
Alternatively, [-2lnL(S(.)] – [-2lnL(S(t)] = 139.47 - 132.01 = 7.46 
 
df = 7 …   S(t) has 8 parameters and S(.) has 1, and 8-1=7. 
P = 0.3823 … cannot reject the null hypothesis – considering weekly estimates does not improve 
the fit of the model to the data – don’t have strong evidence of weekly variation in survival rate. 
 

Information-theoretic - AIC comparison 
∆AICc for S(.) = 0.00 
∆AICc for S(t) = 7.05 
 
S(.) is a more parsimonious model for this dataset than is S(t) 
 

BUT WHAT OF OTHER MODELS? 
 

Imagine that the average temperature (in degrees C) varied by week 
 
1 2 3 4 5 6 7 8 
11 9 8 4 6 5 10 9 
 
To find out if there’s evidence of a relationship between weekly survival rate and temperature, we 
need a more flexible method: LOGISTIC REGRESSION is one such tool and one we’ll use often. 
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Building and Evaluating Competing Models of Binomial Processes 
 
So far, we’ve simply worried about estimating p based on an observed number of 
heads out of N trials.  This is useful (9/37 walruses survive; p-hat = 0.243, se-hat 
= 0.07).  But … this is also inadequate for most problems.  That is, we’ll want to 
know if p (probability of surviving 1 year) varies among the walruses based on 
factors such as age, year, individual characteristics, etc.  We need to evaluate a 
variety of models to check for heterogeneity in p (or S).  A useful method for 
evaluating competing models of binomial responses is logistic regression.   
 
This method assumes that errors in Y are binomially distributed and uses a 
logit link between Y and the regression string.  Let’s work through what these 
features entail. 
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So, ( | )i iE y x = ( )xπ  and ( )i iy xπ ε= + ,  
 
where the quantity can assume 1 of 2 possible values:  

(1) if yi = 1, then 1 ( )i xε π= − with probability ( )xπ ; and  
(2) if yi = 0, then ( )i xε π= −  with probability 1 ( )xπ− .   
(3) Thus,ε has a distribution with mean 0 and variance = ( ) [1 ( ( )]x xπ π⋅ − .   

 
The use of ( )xπ provides us with a simpler notation for working with the 
regression problem and nicely shows how the errors are explicitly assumed to be 
binomially distributed. 
 
We can use the logit transformation on both sides of the equation and simplify 
the right side considerably! Aha, so that’s what the logit link refers to – let’s look 
at that a bit more closely. 
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This is nice but leads to a transformed response variable: ln(S/(1-S)) = log odds 
or the natural logarithm of the ratio of S & 1-S.  Here, the relationship between 
ln(S/(1-S)) and 0 1 1Xβ β+ ⋅  is linear.  The relationship between (Pr(y=1)) and  
 

0 1 1

0 1 1

exp( )
1 exp( )

X
X

β β
β β

+ ⋅
+ + ⋅

 is S-shaped and constrains the resulting values so that they 

range between 0 & 1, which is appropriate for probabilities.   
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To get some experience with how the function 
behaves, try using a range of values from -5 to +5 
(e.g., by step sizes of 0.25) in place of 0 1 1( )Xβ β+ ⋅  
in the equation.  When you do, you’ll see that the 
resulting values range from ~0 to ~1 and are at 
exactly 0.5 when 0 1 1( ) 0Xβ β+ ⋅ = , which makes 
sense given that exp(0)=1. 
In R, you can obtain these probabilities from the 
logistic distribution with:  plogis(seq(-5,5,.25)) 
 
 
 
The error term and link function lead to a pdf and likelihood function for the 
logistic equation.  These functions should look quite familiar to you. 
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As we discussed before, actual estimation is done on lnL. 
But … the basic concepts here are that: 

1. ( )xπ gives the conditional probability that y=1 given x for any estimates 
of 0β  and 1β . 

2. 1 ( )xπ− gives the conditional probability that y=0 given x for any 
estimates of  0β  and 1β . 

3. For those pairs (xi,yi) where yi = 1 the contribution to the likelihood 
function is ( )xπ 1. 

4. For those pairs (xi,yi) where yi = 0 the contribution to the likelihood 
function is 1 ( )xπ− 1. 

5. Thus, the most likely estimates of  0β  and 1β are those that lead to 
high values of ( )xπ  when yi = 1 and low values of ( )xπ when yi = 0 (OR 
high values of 1 ( )xπ−  when yi = 0). 

 
Beyond this set of difficulties, everything else about model building and model 
selection is the same as what you learned in regression problems with normally 
distributed errors in y.  The principles that we’re using to guide analysis of linear 
regression also apply in logistic regression (model lists, model selection, etc.). 
 
 
Useful information about interpreting beta’s in simple logistic regression 
The parameter 1β determines the rate of increase or decrease of the S-shaped 
curve.  The sign of 1β indicates whether the curve ascends or descends, and the 
rate of change increases as | 1β | increases.  When the model holds with 1β =0, the 
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Pr(S=1) simplifies to a constant value = 
0

01
e

e

β

β+
.  In this case, ( )xπ is identical for 

all x, i.e., y is independent of x.  Examine the curve below and note that the rate 
of change in ( )xπ per unit change in x varies.  Straight lines drawn tangent to the 
curve at any particular x value describe the rate of change at that point.  The 
logistic regression’s line has a slope equal to 1 ( ) [1 ( )]x xβ π π⋅ ⋅ − .  Thus, the line 
tangent to the curve at x for which ( )xπ = 0.5 has slope 1β (0.5)(0.5), and when 

( )xπ = 0.9 or 0.1, the line has slope 1β (0.9)(0.1).  Thus, the line has its steepest 
slope when ( )xπ = 0.5, and the slope approaches 0 as ( )xπ approaches 0 or 1.  It 
turns out for a simple model that’s only 0 1 1( )Xβ β+ ⋅ , the x value for which ( )xπ = 
0.5 can be determined by x = - 0β / 1β  and is sometimes called the median 
effective level (EL50). 
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B0=-5, B1 =0.1 
 
-(-5/0.1)= EL50 = 50 
 
Pr(S=1|x = 50) = 0.5 
 

e 5− .1 50⋅+

1 e 5− .1 50⋅++
0.5=

 
 
slope @ x=50 = .1(.25) = .025 
 
slope @ x=5 is .1(.011)(.989)=0.001 

B0=-5, B1 =0.2 
 
-(-5/0.2)= EL50 = 25 
 
Pr(S=1|x = 25) = 0.5 
 

e 5− .2 25⋅+

1 e 5− .2 25⋅++
0.5=

 
 
slope @ x= 25 = .2(.25) = .05 
 
slope @ x = 5 is .2(.018)(.982) = 0.004 
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Logistic Regression – MLE 
 
DATA 
x=c(0.6, 0.7, 0.8, 0.9, 0.9, 0.9, 0.9, 1.0, 1.0, 1.0, 1.1, 1.1, 1.1, 1.2, 1.3, 1.3, 1.3) 
y=c(0,    0,    0,    0,    0,    0,    1,    0,    1,    1,    1,    1,    1,    1,    1,    1,    1) 

Graphical Representation of data and fitted line 

 

Calculating the Likelihood of different combinations of parameter estimates 
ߨ  ൌ ୣ୶୮	ሺఉబାఉబ∙௫ሻଵାୣ୶୮	ሺఉబାఉబ∙௫ሻ   ln ቀ గଵିగቁ ൌ ߚ  ߚ ∙  ݔ
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lnL(-15.000, 21.000) =   -20.383 
 
lnL(-30.000, 11.000) = -175.700 
 
lnL(-22.000, 23.000) =    -4.347 
 
MLE’s are:  
Parameter Estimate Std. Error 95% Confidence 

Intervals 
β0 -22.7465 12.26336 -46.7823 1.28922 
β1 23.8061 12.81938 -1.3194 48.93159 
lnL -4.34485 
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Calculating the Likelihood and log-Likelihood of β0 = -22.7465 and β1 = 23.8061 for 
the dataset under consideration (obtain πi  using ߨ ൌ ୣ୶୮	ሺఉబାఉబ∙௫ሻଵାୣ୶୮	ሺఉబାఉబ∙௫ሻ ) 
 

iπ  iy  iy
iπ  (1 )iπ−  (1 )iy− (1 )(1 ) iy

iπ −− (1 )(1 )i iy y
i iπ π −⋅ −  (1 )ln( (1 ) )i iy y

i iπ π −⋅ −
0.000 0 1.000 1.000 1 1.000 1.000 -0.000 
0.002 0 1.000 0.998 1 0.998 0.998 -0.002 
0.024 0 1.000 0.976 1 0.976 0.976 -0.024 
0.211 0 1.000 0.789 1 0.789 0.789 -0.237 
0.211 0 1.000 0.789 1 0.789 0.789 -0.237 
0.211 0 1.000 0.789 1 0.789 0.789 -0.237 
0.211 1 0.211 0.789 0 1.000 0.211 -1.558 
0.743 0 1.000 0.257 1 0.257 0.257 -1.357 
0.743 1 0.743 0.257 0 1.000 0.743 -0.298 
0.743 1 0.743 0.257 0 1.000 0.743 -0.298 
0.969 1 0.969 0.031 0 1.000 0.969 -0.032 
0.969 1 0.969 0.031 0 1.000 0.969 -0.032 
0.969 1 0.969 0.031 0 1.000 0.969 -0.032 
0.997 1 0.997 0.003 0 1.000 0.997 -0.003 
1.000 1 1.000 0.000 0 1.000 1.000 -0.000 
1.000 1 1.000 0.000 0 1.000 1.000 -0.000 
1.000 1 1.000 0.000 0 1.000 1.000 -0.000 
 
Properties of last 2 columns are used to get the 
likelihood & lnL of the pair of values for β0 and β1 
that were used to calculate the values of pii in the 
table. 
 

Product of 
column = 

0.013 
 

= likelihood 

Sum of 
column = 

-4.35 
= log-likelihood 

 

Do you think that this is a desirable shape?  Now, take a look back at the estimates, the 
associated SE’s, and the dataset: we’ve got a small sample size and poor precision. 

 



 

Page 8 of 12 

Estimated Variance-Covariance Matrix 
 
Parameter β0 β 1 
β0 150.390 -156.823 
β 1 -156.823 164.336 
 
 Do these values make sense given the estimates & graph you saw above? 
  

Estimated Correlation Matrix 
 

Correlation or 1,2

1 2

cov
se se

⎛ ⎞
⎜ ⎟⋅⎝ ⎠

for the 2 estimates = -156.823/(12.26336 x 12.81938) = ? 

 
Parameter β0 β 1 
β0 1.000000 -0.997550 
β 1 -0.997550 1.000000 
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 Goodness of Fit 
 
Deviance Residuals (formal testing available [chi-square distribution] but problematic) 
 

1/ 2ˆ ˆ{ 2[ log ( ) (1 ) log (1 )]}i i e i i e idev Y Yπ π= ± − ⋅ + − ⋅ −  
 
The sign of a deviance residual is positive if ˆi iy π≥  and negative if ˆi iy π<  
 

iπ  iy  Deviancei Devi
2

0.000 0 -0.021 0.0004 
0.002 0 -0.068 0.0046 
0.024 0 -0.221 0.0488 
0.211 0 -0.688 0.4733 
0.211 0 -0.688 0.4733 
0.211 0 -0.688 0.4733 
0.211 1 1.765 3.1152 
0.743 0 -1.648 2.7159 
0.743 1 0.771 0.5944 
0.743 1 0.771 0.5944 
0.969 1 0.251 0.0630 
0.969 1 0.251 0.0630 
0.969 1 0.251 0.0630 
0.997 1 0.077 0.0059 
1.000 1 0.023 0.0005 
1.000 1 0.023 0.0005 
1.000 1 0.023 0.0005 
 

2

1
( ) 2 ln

n

i
i

dev ModelDeviance L
=

= = −∑ = -2 (-4.3449) =  8.6898 

 
Deviance Residuals (y-axis) against values of x (x-axis) 
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More interesting problems will have: 
• Larger datasets 
• Competing models 

 
Under these circumstances, we’ll: 

• Find the MLEs for each model,  
• Use the lnL values to compare models (more on how to do that later) 
• Evaluate Goodness of fit, if possible, for our most complex model (more on that 

later too!). 
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OK – so now that you have some background in logistic regression.  Let’s go back to our 
dataset on weekly survival and see if we can work with some more interesting models. 
 

Week # 
Females 

# 
Died 

# 
Survived

Ppn 
Survived

(p*(1-p))/n se-hat 

1 48 1 47 0.979 0.00042 0.021 
2 47 2 45 0.957 0.00087 0.029 
3 41 2 39 0.951 0.00113 0.034 
4 39 5 34 0.872 0.00287 0.054 
5 32 4 28 0.875 0.00342 0.058 
6 28 3 25 0.893 0.00342 0.058 
7 25 1 24 0.960 0.00154 0.039 
8 24 1 23 0.958 0.00166 0.041 

TOTAL 284 19 265 0.9331 0.00022 0.015 
 
Average temperature (in degrees C) varied by week.  Does this relate to variation in survival? 
 
Week 1 2 3 4 5 6 7 8 
Temp 11 9 8 4 6 5 10 9 

 

 
 

 
Model S(temp) 
 
The MLEs for this model are 0β̂ = 0.75; 1̂β = 0.26 – consider their role in the likelihood equation 
and how they would have been found.   
ߨ  ൌ ୣ୶୮	ሺఉబାఉబ∙௫ሻଵାୣ୶୮	ሺఉబାఉబ∙௫ሻ   ln ቀ గଵିగቁ ൌ ߚ  ߚ ∙  ݔ
 
,ߚሺܮ݈݊  ଵሻߚ ൌሾݕ ∙ ሺߚ  ߚ ∙ ሻሿݔ െln	ሾ1  exp	ሺߚ  ேߚ

ୀଵ
ே
ୀଵ ∙  ሻሿݔ

 
 

week 

S(temp)  
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ˆiπ  = exp(0.75 + (0.26 x tempweek i)) / [1 + exp(0.75 + (0.26 x tempweek i))] 
 
-2lnL = -2 x ln {[(0.974)47(1-0.974)1] x [(0.957)45(1-0.957)2] x [(0.945)39(1-0.945)2] 
 
       x     [(0.858)34(1-0.858)5] x [(0.910)28(1-0.910)4] x [(0.887)25(1-0.887)3] 
 
                   x     [(0.967)24(1-0.967)1] x [(0.957)23(1-0.957)1]} 
 
-2lnL = 132.64 
 
AIC = 132.64 + 2(2) = 136.64 
 
AICc= 132.64 + 2(2) + 2(2)(2+1)/(284-2-1) = 132.64 + 4 + 0.04 = 136.68 
 
 
                                                Delta    AICc       
Model                                  AICc    AICc   Weight     #Par       ~-2lnL  ~Deviance 
-------------------------------------------------------------------------------------------------------------------------- 
{S(temp)}                        136.690     0.00  0.87171   2.0000   132.64      0.63 
{S(.)}                              141.486     4.80  0.07924   1.0000   139.47 7.46 
{S(t)}                              148.532   11.84  0.00234   8.0000   132.01 0.00 
 
 
 
Aha – so, it looks bringing in covariates through logistic regression can be useful. 
 
Now what you need is some software for analyzing data.  Luckily, Program MARK does 
a nice job at this.  One might also use other packages such as R, SAS, etc.  We’ll use 
MARK because it is also very useful for so many other related analyses that we’ll do. 
 

 


