WILD 502 - Multi-state models for live recaptures
(Closely follows the text on pages 454-468 of the Williams et al. book)

We recently reviewed multiple age models, which can be viewed as special cases of
multi-state models. Animals change age (i.e., a state) in a deterministic manner. In other
types of multi-state models, changes among states are probabilistic.

Multi-state models are a generalization of the CJS model that allow individuals to be
distributed across a number of sites or phenotypic states. Thus, multi-state models
consider the probabilities of transitions between or among states. Many interesting
questions relate to (1) transition probabilities among states and (2) state-specific vital
rates. Examples exist in evolutionary biology (trade-offs), metapopulation biology, and
population & habitat management.

As a starting point for considering the transition probabilities, you need to have a basic
understanding of a Markov chain. Here, we will consider a first-order Markov process or
Markov chain. Ina first-order Markov process, an animal’s state at time i+1 depends
only on its state at time i. That is, its states at earlier times do not influence the
probability that it will change states between i and i+1. Andrei Markov was a Russian
mathematician who was the first to study matrices of transition probabilities. The
probabilities consider all possible combinations of transitions between or among a finite
set of states.

Time i+1
Fragmented | Intact | Sum
Time | Fragmented 0.6 0.4 1
i Intact 0.3 0.7 1

Time i+1
A B C

Time | A 0.7 0.2 0.1
i B 0.6 0.3 0.1
C 0.7 0.2 0.1

£
i
3

As with other data types you’ve encountered in the course, you estimate the parameters
based on Model structure and the number of animals with each of the observable capture
histories, e.g., 3 occasions and 2 states for animals Released from state 2 on occasion 1:
X222, X221, X220, X212, X211, X210, X202, X201, X200.

Be sure that you review and understand Table 17.17 (page 456) and
Figure 17.3 (page 457) of Williams et al.
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Parameters of the multi-state are similar to those of single-state models but now phi and
p are state-specific rates and phi incorporates transition probabilities.

@.° = Probability of being alive & in state s at time i+1 given that you were in state r at
time i. It considers both survival & transition = survival-transition probability.

Pr[11020 | released at occasion 1] =
o0y [y (= p3)- 0" g+ (L= p3) 5" 0] (L= - P~y )

I think you can see how 0’s in the Encounter Histories create complicated probability
statements! But ... you are still just considering the possible ways in which the
encounter history could arise.

Often you will want to decompose the ¢ into its components: S &

S = Probability that an animal in state r at time i survives and remains in the study
population until time i+1. Survival depends only on your state at time i.

This is appropriate for some situations, e.g., movement occurs near the end of the
interval or most of the mortality in the interval occurs while the animal is in the
previous state or most of the mortality in the interval is due to the previous state.
Of course it will not be appropriate for all situations.

w!" = Probability that an animal is in state s at time i+1 given that it was in state r at time
i and that it survived to time i+1 and stayed in the study population.

Decomposition of ¢ into its components S;” & y/;"is done by ¢* =S -y
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Analysis on the composite ¢ or the components S & i are equivalent and both

contain the same number of parameters. Consider the survival and transition parameters
to be estimated for the 1st interval of a study with 2 states:

Lot el ol ol
2. S, v, SEwl Remember: 1-y;? =y;* and 1-y2 =y

To estimate the parameters of multi-state models, you can use capture history data
(Program MARK) or mjj array (MSSURV V).

MARK by default treats " =1-" ;* and works with the components S/ &y/*. But

S#I

MARK now does allow you to choose which * to obtain by subtraction.

MSSURVIV is flexible for both of these features though a bit less user-friendly.
M-SURGE also handles these models and was specifically designed for this data type.
E-SURGE is even more flexible and allows for state uncertainty.

The time-dependent model described here, considered in MARK, and covered by
Williams et al. is the Arnason-Schwarz model. There is also a Jolly Movement model
(JMV model) that allows pi to depend on state at time i and i-1.

As you have seen for other data types in the course, you can develop competing models
that: (1) reduce the number of parameters considered, i.e., test for state- and time-
specificity in the rates; (2) use covariates, i.e., attributes of groups, age, individual
characteristics. For example, when modeling the transition probabilities among sites, it is
sometimes useful to consider the distance between sites (with the design matrix in
MARK). This can greatly reduce the number of parameters that need to be considered
and can be interesting biologically.

TN
g general model - all growps (strata) different - constant over time
Splgs vrskint sarvival - group difference i recaptune and meovement
webant mecaptuse - group differences in survival and newement
L onstant movemnenit (inser-=lamd al equall - group differencoes in
urvival and mecapiur
survival constrained bo be & function of island qualsty - group
dilfenenoes in mecapiuene and maovsrwenl
."'.I"-' recapiune consirained as 4 funclion of islnd sige - group
dafferenoes in swrvival and movemont
SR il ety inter-island movement a function of inter-island distanoe - group
dilferences in survival and mecapture

fumcton of idand v aliky, mecaptu a
and nber-laland moversnt a function of Enbes-lsland

WILD 502: Multi-state - pg. 4 of 6



Goodness-of-Fit can now be evaluated using U-Care using extensions of what you saw
under the CJS section of the course. We won’t go into the details in this course.

In some situations, you cannot defend only considering that transitions follow a 1%-order
Markov process. More complex models can be evaluated for this process under those
circumstances. For example, you may wish to consider a 2"-order Markov chain or

memory model whereby the values of * depend on the state at time i and i-1. A paper
on Canada geese by Hestbeck et al. is a nice example of the use of 2"-order models.

Multi-state methods are very important and can provide a variety of meaningful
estimates.
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Multinomial logit link (mlogit)

When you have >2 states, you can run into estimation problems for some of the state
transitions. For example, for a scenario with states A, B, and C, imagine that you estimate
psi(AA) by subtraction, i.e., psi(AA) = 1 — psi(AB) — psi(AC), and that estimated rates
for psi(AB) and psi(AC) are 0.53 and 0.49, respectively, such that psi(AA) is estimated as
-0.02, which isn’t possible for the actual transition. Program MARK allows you to use
the “mlogit” link function for state transitions, which prevents such a problem. The
sidebar in chapter 10 of C&W on the multinomial logit link, which begins on page 10-23,
provides the details of how this link function works and how to implement it in MARK.
If you are doing multistate modeling, you should be aware of the potential issue and
solution with state transitions being estimated as <O0.

Problematic likelihood surface

As explained in chapter 10 of C&W (see page 10-40), multi-state models can have some
challenging numerical estimation problems. The chapter provides information on the root
of such problems and ideas on how to avoid such problems. In particular, they note that
an issue that can arise for this data type is that the likelihood surface can have multiple
peaks (multi-modal), which can make it difficult to find the true maximum likelihood
estimates (the standard algorithm can find a local maximum, i.e., smaller peak
surrounded by lower spots in the likelihood surface, rather than the global, or true,
maximum). (Note if you think about minimizing the -2InL value, you then think of trying
to find the global minimum value and worry about getting stuck at local minima).
Providing the model with starting values from a simpler model can help. Also, a
technique called simulated annealing, which is slower as it requires many evaluations of
the likelihood surface to arrive at final estimates, can be used. It handles the problem by
periodically making random jumps to new parameter values as part of the routine. It can
be a good idea to try this alternate approach before reporting final values from multi-state
models.

Interesting uses of multi-state models

It is possible to use multi-state models for some common problems in studies of wild
animals. Imagine a scenario where you are radio-tracking animals every week for known-
fate type data, but occasionally fail to find all the animals, e.g., perhaps bad weather
prevents completing a telemetry flight). One can use a multi-state model with states live
and dead to model such data. The key is to realize that (1) you can fix the survival
parameter (S) to 1.0, (b) you estimate survival rate using the psi that corresponds to
transitioning from the live state to the dead state, and (c) that you can fix the probability
of transitioning from the dead state to the live state as 0. This approach allows for
imperfect detection of animals in either live or dead states despite the use of telemetry.

The approach above can be generalized to handle multiple causes of death, e.g., natural
and human-caused. Again, you can fix S = 1.0 and estimate the probabilities of
transitioning from the live state to each of the dead states as well as the probability of
remaining in the live state (i.e., your estimate of survival rate). This class of models is
very flexible and powerful and well worth learning how to use well.
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