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WILD 502 - Multi-state models for live recaptures 

(Closely follows the text on pages 454-468 of the Williams et al. book) 

 

We recently reviewed multiple age models, which can be viewed as special cases of 

multi-state models. Animals change age (i.e., a state) in a deterministic manner.  In other 

types of multi-state models, changes among states are probabilistic. 

 

Multi-state models are a generalization of the CJS model that allow individuals to be 

distributed across a number of sites or phenotypic states.  Thus, multi-state models 

consider the probabilities of transitions between or among states.  Many interesting 

questions relate to (1) transition probabilities among states and (2) state-specific vital 

rates.  Examples exist in evolutionary biology (trade-offs), metapopulation biology, and 

population & habitat management. 

 

As a starting point for considering the transition probabilities, you need to have a basic 

understanding of a Markov chain.  Here, we will consider a first-order Markov process or 

Markov chain.  In a first-order Markov process, an animal’s state at time i+1 depends 

only on its state at time i.  That is, its states at earlier times do not influence the 

probability that it will change states between i and i+1.   Andrei Markov was a Russian 

mathematician who was the first to study matrices of transition probabilities.  The 

probabilities consider all possible combinations of transitions between or among a finite 

set of states.   

 

 Time i+1 

Fragmented Intact Sum 

Time  

i 

Fragmented 0.6 0.4 1 

Intact 0.3 0.7 1 

 

 Time i+1 

A B C Sum 

Time  

i 

A 0.7 0.2 0.1 1 

B 0.6 0.3 0.1 1 

C 0.7 0.2 0.1 1 

 

As with other data types you’ve encountered in the course, you estimate the parameters 

based on Model structure and the number of animals with each of the observable capture 

histories, e.g., 3 occasions and 2 states for animals Released from state 2 on occasion 1: 

x222,  x221,  x220,  x212,  x211,  x210,  x202,  x201,  x200. 

 

Be sure that you review and understand Table 17.17 (page 456) and  

Figure 17.3 (page 457) of Williams et al. 
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Parameters of the multi-state are similar to those of single-state models but now phi and 

p are state-specific rates and phi incorporates transition probabilities. 

 
rs

i = Probability of being alive & in state s at time i+1 given that you were in state r at 

time i.  It considers both survival & transition = survival-transition probability. 

 

 
 

 

Pr[11020 | released at occasion 1] =  

 
11 1 11 1 12 2 12 2 22 2 22 2 21 1

1 2 2 3 3 4 2 3 3 4 4 5 4 5[ (1 ) (1 ) ] (1 )p p p p p p p                       

 

I think you can see how 0’s in the Encounter Histories create complicated probability 

statements!  But … you are still just considering the possible ways in which the 

encounter history could arise. 

 

Often you will want to decompose the 
rs

i into its components: &r rs

i iS   

 
r

iS = Probability that an animal in state r at time i survives and remains in the study 

population until time i+1.  Survival depends only on your state at time i.   

 

This is appropriate for some situations, e.g., movement occurs near the end of the 

interval or most of the mortality in the interval occurs while the animal is in the 

previous state or most of the mortality in the interval is due to the previous state.  

Of course it will not be appropriate for all situations. 

 
rs

i = Probability that an animal is in state s at time i+1 given that it was in state r at time 

i and that it survived to time i+1 and stayed in the study population.  

 

Decomposition of 
rs

i into its components &r rs

i iS  is done by 
rs r rs

i i iS   . 
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Analysis on the composite 
rs

i or the components &r rs

i iS   are equivalent and both 

contain the same number of parameters.  Consider the survival and transition parameters 

to be estimated for the 1st interval of a study with 2 states: 

 

1. 
11

1 ,
12

1 ,
22

1 ,
21

2  

 

2. 
1

1S , 
12

1 , 
2

1S ,
21

1    Remember: 
12 11

1 11      and   
21 22

1 11     

 

To estimate the parameters of multi-state models, you can use capture history data 

(Program MARK) or mij array (MSSURVIV). 

 

MARK by default treats 1rr rs

i i

s r

 


  and works with the components &r rs

i iS  .  But 

MARK now does allow you to choose which 
rs

i  to obtain by subtraction. 

 

MSSURVIV is flexible for both of these features though a bit less user-friendly. 

M-SURGE also handles these models and was specifically designed for this data type. 

E-SURGE is even more flexible and allows for state uncertainty. 

 

The time-dependent model described here, considered in MARK, and covered by 

Williams et al. is the Arnason-Schwarz model.  There is also a Jolly Movement model 

(JMV model) that allows pi to depend on state at time i and i-1. 

 

As you have seen for other data types in the course, you can develop competing models 

that: (1) reduce the number of parameters considered, i.e., test for state- and time-

specificity in the rates; (2) use covariates, i.e., attributes of groups, age, individual 

characteristics.  For example, when modeling the transition probabilities among sites, it is 

sometimes useful to consider the distance between sites (with the design matrix in 

MARK).  This can greatly reduce the number of parameters that need to be considered 

and can be interesting biologically. 
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Goodness-of-Fit can now be evaluated using U-Care using extensions of what you saw 

under the CJS section of the course.  We won’t go into the details in this course. 

 

In some situations, you cannot defend only considering that transitions follow a 1st-order 

Markov process.  More complex models can be evaluated for this process under those 

circumstances.  For example, you may wish to consider a 2nd-order Markov chain or 

memory model whereby the values of 
rs

i depend on the state at time i and i-1.  A paper 

on Canada geese by Hestbeck et al. is a nice example of the use of 2nd-order models. 

 

Multi-state methods are very important and can provide a variety of meaningful 

estimates. 
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Multinomial logit link (mlogit) 

When you have >2 states, you can run into estimation problems for some of the state 

transitions. For example, for a scenario with states A, B, and C, imagine that you estimate 

psi(AA) by subtraction, i.e., psi(AA) = 1 – psi(AB) – psi(AC), and that estimated rates 

for psi(AB) and psi(AC) are 0.53 and 0.49, respectively, such that psi(AA) is estimated as 

-0.02, which isn’t possible for the actual transition. Program MARK allows you to use 

the “mlogit” link function for state transitions, which prevents such a problem. The 

sidebar in chapter 10 of C&W on the multinomial logit link, which begins on page 10-23, 

provides the details of how this link function works and how to implement it in MARK. 

If you are doing multistate modeling, you should be aware of the potential issue and 

solution with state transitions being estimated as <0. 

 

Problematic likelihood surface 

As explained in chapter 10 of C&W (see page 10-40), multi-state models can have some 

challenging numerical estimation problems. The chapter provides information on the root 

of such problems and ideas on how to avoid such problems. In particular, they note that 

an issue that can arise for this data type is that the likelihood surface can have multiple 

peaks (multi-modal), which can make it difficult to find the true maximum likelihood 

estimates (the standard algorithm can find a local maximum, i.e., smaller peak 

surrounded by lower spots in the likelihood surface, rather than the global, or true, 

maximum). (Note if you think about minimizing the -2lnL value, you then think of trying 

to find the global minimum value and worry about getting stuck at local minima). 

Providing the model with starting values from a simpler model can help. Also, a 

technique called simulated annealing, which is slower as it requires many evaluations of 

the likelihood surface to arrive at final estimates, can be used. It handles the problem by 

periodically making random jumps to new parameter values as part of the routine. It can 

be a good idea to try this alternate approach before reporting final values from multi-state 

models. 

 

Interesting uses of multi-state models 

It is possible to use multi-state models for some common problems in studies of wild 

animals. Imagine a scenario where you are radio-tracking animals every week for known-

fate type data, but occasionally fail to find all the animals, e.g., perhaps bad weather 

prevents completing a telemetry flight). One can use a multi-state model with states live 

and dead to model such data. The key is to realize that (1) you can fix the survival 

parameter (S) to 1.0, (b) you estimate survival rate using the psi that corresponds to 

transitioning from the live state to the dead state, and (c) that you can fix the probability 

of transitioning from the dead state to the live state as 0. This approach allows for 

imperfect detection of animals in either live or dead states despite the use of telemetry. 

 

The approach above can be generalized to handle multiple causes of death, e.g., natural 

and human-caused. Again, you can fix S = 1.0 and estimate the probabilities of 

transitioning from the live state to each of the dead states as well as the probability of 

remaining in the live state (i.e., your estimate of survival rate). This class of models is 

very flexible and powerful and well worth learning how to use well. 
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