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Expressing Uncertainty on Estimated Probabilities

After you look at β̂′s and their associated ŜE(β̂)′s results of a logistic regression , you are typically also
interested in generating estimates of survival. To do so, you have learned to back-transform the regression
from the logit scale to the probability scale using exp(β̂0+β̂1·x1...)

1+exp(β̂0+β̂1·x1...)
. You also need to have a way of obtaining

estimates of the SE’s for Ŝ. There are a variety of ways of doing so, but for now, we’ll discuss the delta
method, which is dicussed in detail in Appendix B of the Cooch and White on-line book. The key idea is that
you work with (1) the β̂′s and the variance-covariance matrix for the β̂′s, (2) the transformation being used
to convert the β̂′s to Ŝ, and (3) a set of partial derivatives that indicate how much Ŝ changes as each of the
β̂′s changes, i.e., (how sensitive is the outcome Ŝ to the uncertainties about the β̂′s).

A Simple Example

For the S(constant) model on the fawns data, you estimated β̂0 as -0.3545 and ŜE(β̂0) as 0.1903. The
transformation is exp(β̂0)

1+exp(β̂0) . You can read about the derivatives in Appendix B of the Cooch and White book,
which is beyond the level of detail that we’ll get into at this point in the course. Fortunately, we can use the
deltavar function of the emdbook package to do the calculations quite easily as it calculates the derivatives
and does the required matrix math for us.
library(knitr) # for printing nice tables
library(emdbook) # for deltavar function
library(ggplot2) # for plotting
b0 <- -0.354545
Beta.hats <- c(b0 = b0)
se_b0 <- 0.1902681

# Calculate ln odds of Survival rate
ln_odds_S <- b0

# Estimate the 95% confidence limits for ln odds of S
se_ln_odds_S <- se_b0 # simple for this problem with only 1 beta_hat
lcl_ln_odds_S <- ln_odds_S - 1.96 * se_ln_odds_S
ucl_ln_odds_S <- ln_odds_S + 1.96 * se_ln_odds_S

# backtransform log-odds to obtain estimate of S
S <- plogis(ln_odds_S)

# Estimate SE for S with delta method
# create var-cov matrix (this one's simply a 1 x 1 matrix)
var_Beta = matrix(se_b0^2, nrow = 1, ncol = 1)
se_S <- sqrt(deltavar(exp(b0)/(1 + exp(b0)),

meanval = Beta.hats,
Sigma = var_Beta))

cbind(S, se_S)

## S se_S
## [1,] 0.4122807 0.04610297
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http://www.phidot.org/software/mark/docs/book/pdf/app_2.pdf


You can obtain 95% confidence limits for Ŝ as shown below. Notice that here you don’t use the ŜE(Ŝ) to
obtain the confidence limits. Rather, you work with confidence limits on the logit scale and back-transform
those values, which creates confidence limits for Ŝ with better properties, e.g., they’ll stay within the 0 to 1
bounds.
# obtain confidence limits for S_hat by back-transforming
# from the log-odds and confidence limits for log-odds
lcl_S <- plogis(lcl_ln_odds_S)
ucl_S <- plogis(ucl_ln_odds_S)
cbind(S, se_S, lcl_S, ucl_S)

## S se_S lcl_S ucl_S
## [1,] 0.4122807 0.04610297 0.3257501 0.504595

A Slightly More Complex Example

You also estimated the parameters of the S(length) model that contains an intercept, β̂0, and a slope, β̂1,
which is multiplied by the length covariate. For this model, you need to first use the delta method to obtain
estimates of the log-odds and associated standard errors for the log-odds of survival for animals of different
lengths. Once you have those, you can obtain the confidence bounds on the estimated log-odds.
# Store beta_hats
b0 <- -10.23404 # intercept
b1 <- 0.07999 # beta for length

# Store variance-covariance matrix for beta_hats
sigma <- matrix(c(
23.02372737, -0.185786837,
-0.185786837, 0.001501638), nrow = 2, ncol = 2)

# Provide length values over range of data
Length <- seq(from = 108, to = 135.5, by = 0.5)

# Calculate ln odds of Survival rate for any length
ln_odds_S <- b0 + b1 * Length

# Estimate the Standard Errors for ln odds of S
se_ln_odds_S <- sqrt(deltavar(b0 + b1 * Length,

meanval = c(b0 = -10.635836, b1 = 0.0831520),
Sigma = sigma))

# Estimate the 95% confidence limits for ln odds of S
lcl_ln_odds_S <- ln_odds_S - 1.96 * se_ln_odds_S
ucl_ln_odds_S <- ln_odds_S + 1.96 * se_ln_odds_S

# Store all as dataframe
log_odds <- data.frame(Length, ln_odds_S,

se_ln_odds_S,
lcl_ln_odds_S,
ucl_ln_odds_S)

# take a look
kable(head(log_odds, 4), digits = 4)

2



Length ln_odds_S se_ln_odds_S lcl_ln_odds_S ucl_ln_odds_S
108.0 -1.5951 0.6394 -2.8484 -0.3418
108.5 -1.5551 0.6210 -2.7723 -0.3380
109.0 -1.5151 0.6026 -2.6963 -0.3340
109.5 -1.4751 0.5843 -2.6204 -0.3299

# Plot estimated relationship between the log-odds and body length.
ggplot(log_odds, aes(x = Length, y = ln_odds_S)) +

geom_line(size = 1.5) +
geom_ribbon(aes(ymin = lcl_ln_odds_S, ymax = ucl_ln_odds_S), alpha = 0.2) +

xlab("Body Length (cm)") +
ylab("Estimated Log-Odds of Survival")

−3

−2

−1

0

1

110 120 130

Body Length (cm)

E
st

im
at

ed
 L

og
−

O
dd

s 
of

 S
ur

vi
va

l

Finally, to obtain Ŝ, ŜE(Ŝ), and confidence limits for Ŝ, you do the following work. Notice that as in the
simpler example above that you don’t use the ŜE(Ŝ) to obtain the confidence limits. Rather, you work with
confidence limits on the logit scale and back-transform those values, which creates confidence limits for Ŝ
with better properties, e.g., they’ll stay within the 0 to 1 bounds.
# back transform the log-odds to obtain estimates of S
S <- plogis(ln_odds_S)
lcl_S <- plogis(lcl_ln_odds_S)
ucl_S <- plogis(ucl_ln_odds_S)

# Estimate the Standard Errors for S
se_S <- sqrt(deltavar(

exp(b0 + b1 * Length) / (1 + exp(b0 + b1 * Length)),
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meanval = c(b0 = b0, b1 = b1),
Sigma = sigma))

# Store all as a data.frame
surv_ests <- data.frame(Length, S, se_S, lcl_S, ucl_S)
# look at a few rows
kable(head(surv_ests, 4), digits = 4)

Length S se_S lcl_S ucl_S
108.0 0.1687 0.0897 0.0548 0.4154
108.5 0.1743 0.0894 0.0588 0.4163
109.0 0.1802 0.0890 0.0632 0.4173
109.5 0.1862 0.0885 0.0678 0.4183

# Plot estimated relationship between survival rate and body length.
ggplot(surv_ests, aes(x = Length, y = S)) +

geom_line(size = 1.5) +
geom_ribbon(aes(ymin = lcl_S, ymax = ucl_S), alpha = 0.2) +

xlab("Body Length (cm)") +
ylab("Estimated Survival Rate")
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