## Confidence Intervals on Transformed Quantities WILD 502 - Jay Rotella

## **Expressing Uncertainty on Estimated Probabilities**

After you look at  $\hat{\beta}'s$  and their associated  $\widehat{SE}(\hat{\beta})'s$  results of a logistic regression, you are typically also interested in generating estimates of survival. To do so, you have learned to back-transform the regression from the logit scale to the probability scale using  $\frac{exp(\hat{\beta}_0 + \hat{\beta}_1 \cdot x_1 \dots)}{1 + exp(\hat{\beta}_0 + \hat{\beta}_1 \cdot x_1 \dots)}$ . You also need to have a way of obtaining estimates of the SE's for  $\hat{S}$ . There are a variety of ways of doing so, but for now, we'll discuss the *delta method*, which is dicussed in detail in Appendix B of the Cooch and White on-line book. The key idea is that you work with (1) the  $\hat{\beta}'s$  and the variance-covariance matrix for the  $\hat{\beta}'s$ , (2) the transformation being used to convert the  $\hat{\beta}'s$  to  $\hat{S}$ , and (3) a set of partial derivatives that indicate how much  $\hat{S}$  changes as each of the  $\hat{\beta}'s$  changes, i.e., (how sensitive is the outcome  $\hat{S}$  to the uncertainties about the  $\hat{\beta}'s$ ).

## A Simple Example

For the S(constant) model on the fawns data, you estimated  $\hat{\beta}_0$  as -0.3545 and  $\widehat{SE}(\hat{\beta}_0)$  as 0.1903. The transformation is  $\frac{exp(\hat{\beta}_0)}{1+exp(\hat{\beta}_0)}$ . You can read about the derivatives in Appendix B of the Cooch and White book, which is beyond the level of detail that we'll get into at this point in the course. Fortunately, we can use the *deltavar* function of the *emdbook* package to do the calculations quite easily as it calculates the derivatives and does the required matrix math for us.

```
# for printing nice tables
library(knitr)
library(emdbook) # for deltavar function
library(ggplot2) # for plotting
b0 <- -0.354545
Beta.hats <-c(b0 = b0)
se_b0 <- 0.1902681
# Calculate In odds of Survival rate
ln_odds_S <- b0</pre>
# Estimate the 95% confidence limits for ln odds of S
se_ln_odds_S <- se_b0 # simple for this problem with only 1 beta_hat
lcl_ln_odds_S <- ln_odds_S - 1.96 * se_ln_odds_S</pre>
ucl_ln_odds_S <- ln_odds_S + 1.96 * se_ln_odds_S
# backtransform log-odds to obtain estimate of S
S <- plogis(ln_odds_S)</pre>
# Estimate SE for S with delta method
# create var-cov matrix (this one's simply a 1 x 1 matrix)
var_Beta = matrix(se_b0^2, nrow = 1, ncol = 1)
se_S <- sqrt(deltavar(exp(b0)/(1 + exp(b0)),</pre>
                 meanval = Beta.hats,
                 Sigma = var_Beta))
cbind(S, se_S)
```

## S se\_S ## [1,] 0.4122807 0.04610297 You can obtain 95% confidence limits for  $\hat{S}$  as shown below. Notice that here you don't use the  $\widehat{SE}(\hat{S})$  to obtain the confidence limits. Rather, you work with confidence limits on the logit scale and back-transform those values, which creates confidence limits for  $\hat{S}$  with better properties, e.g., they'll stay within the 0 to 1 bounds.

```
# obtain confidence limits for S_hat by back-transforming
# from the log-odds and confidence limits for log-odds
lcl_S <- plogis(lcl_ln_odds_S)
ucl_S <- plogis(ucl_ln_odds_S)
cbind(S, se_S, lcl_S, ucl_S)
```

## S se\_S lcl\_S ucl\_S
## [1,] 0.4122807 0.04610297 0.3257501 0.504595

## A Slightly More Complex Example

You also estimated the parameters of the S(length) model that contains an intercept,  $\hat{\beta}_0$ , and a slope,  $\hat{\beta}_1$ , which is multiplied by the length covariate. For this model, you need to first use the *delta method* to obtain estimates of the log-odds and associated standard errors for the log-odds of survival for animals of different lengths. Once you have those, you can obtain the confidence bounds on the estimated log-odds.

```
# Store beta hats
b0 <- -10.23404 # intercept
b1 <- 0.07999 # beta for length
# Store variance-covariance matrix for beta_hats
sigma <- matrix(c(</pre>
23.02372737, -0.185786837,
-0.185786837, 0.001501638), nrow = 2, ncol = 2)
# Provide length values over range of data
Length - seq(from = 108, to = 135.5, by = 0.5)
# Calculate ln odds of Survival rate for any length
ln_odds_S <- b0 + b1 * Length</pre>
# Estimate the Standard Errors for ln odds of S
se_ln_odds_S <- sqrt(deltavar(b0 + b1 * Length,</pre>
                               meanval = c(b0 = -10.635836, b1 = 0.0831520),
                               Sigma = sigma))
# Estimate the 95% confidence limits for ln odds of S
lcl_ln_odds_S <- ln_odds_S - 1.96 * se_ln_odds_S</pre>
ucl_ln_odds_S <- ln_odds_S + 1.96 * se_ln_odds_S
# Store all as dataframe
log_odds <- data.frame(Length, ln_odds_S,</pre>
                        se_ln_odds_S,
                        lcl_ln_odds_S,
                        ucl_ln_odds_S)
# take a look
kable(head(log_odds, 4), digits = 4)
```

| Length | $ln\_odds\_S$ | $se\_ln\_odds\_S$ | $lcl\_ln\_odds\_S$ | ucl_ln_odds_S |
|--------|---------------|-------------------|--------------------|---------------|
| 108.0  | -1.5951       | 0.6394            | -2.8484            | -0.3418       |
| 108.5  | -1.5551       | 0.6210            | -2.7723            | -0.3380       |
| 109.0  | -1.5151       | 0.6026            | -2.6963            | -0.3340       |
| 109.5  | -1.4751       | 0.5843            | -2.6204            | -0.3299       |

```
# Plot estimated relationship between the log-odds and body length.
ggplot(log_odds, aes(x = Length, y = ln_odds_S)) +
geom_line(size = 1.5) +
geom_ribbon(aes(ymin = lcl_ln_odds_S, ymax = ucl_ln_odds_S), alpha = 0.2) +
xlab("Body Length (cm)") +
ylab("Estimated Log-Odds of Survival")
```



Finally, to obtain  $\hat{S}$ ,  $\widehat{SE}(\hat{S})$ , and confidence limits for  $\hat{S}$ , you do the following work. Notice that as in the simpler example above that you don't use the  $\widehat{SE}(\hat{S})$  to obtain the confidence limits. Rather, you work with confidence limits on the logit scale and back-transform those values, which creates confidence limits for  $\hat{S}$  with better properties, e.g., they'll stay within the 0 to 1 bounds.

```
# back transform the log-odds to obtain estimates of S
S <- plogis(ln_odds_S)
lcl_S <- plogis(lcl_ln_odds_S)
ucl_S <- plogis(ucl_ln_odds_S)
# Estimate the Standard Errors for S
se_S <- sqrt(deltavar(
    exp(b0 + b1 * Length) / (1 + exp(b0 + b1 * Length)),</pre>
```

```
meanval = c(b0 = b0, b1 = b1),
Sigma = sigma))
# Store all as a data.frame
surv_ests <- data.frame(Length, S, se_S, lcl_S, ucl_S)
# look at a few rows
kable(head(surv_ests, 4), digits = 4)</pre>
```

| Length | $\mathbf{S}$ | $se_S$ | $lcl_S$ | $ucl_S$ |
|--------|--------------|--------|---------|---------|
| 108.0  | 0.1687       | 0.0897 | 0.0548  | 0.4154  |
| 108.5  | 0.1743       | 0.0894 | 0.0588  | 0.4163  |
| 109.0  | 0.1802       | 0.0890 | 0.0632  | 0.4173  |
| 109.5  | 0.1862       | 0.0885 | 0.0678  | 0.4183  |

```
# Plot estimated relationship between survival rate and body length.
ggplot(surv_ests, aes(x = Length, y = S)) +
  geom_line(size = 1.5) +
  geom_ribbon(aes(ymin = lcl_S, ymax = ucl_S), alpha = 0.2) +
    xlab("Body Length (cm)") +
    ylab("Estimated Survival Rate")
```

