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TABLE 4.5 Summary of Model Selection Procedure for Pronghorn Antelope Example
Examining Factors Affecting Detection Probabilities, with 2 General Model for Occupancy
(ie., y(Sg + S+ DW + A))

Model AAIC w ~21 NPar
p(DW) 0.00 24% 618.54 9
p(ST+ A) 1.37 12% 617.913 10
p(A) 1.73 10% - 616.286 11
p(Sg + DW) 1.79 10% 618.325 10
p(DW + A) 1.82 10% 614.36 12
p() 2.80 6% 623345 8
p(Sg+ Sl + DW) 3.17 5% 617.707 11
p(SL+DW + A) . 356 4% 614.1 13
p(Sg + DW + A) 3.58 4% 614.116 i3
piSg +4) 3.62 4% 616.157 12
p(SI+ A) 3.73 4% 616.274 12
p(SD) 4.76 2% 623.305 o
p(Sg 479 2% 623.332 9
p(Sg + SI+ DW + A) 5.15 2% 613.601 14
piSe + S+ A) 5.61 1% 616.153 13
p(Sg+ SD 6.75 1% 623.295 10

Given are the relative difference in AIC values compared to the top-ranked model (AAIC); the
_AIC model weights (w); twice the negative log-likelihood (=21); and the number of parameters in
the model {NPar).

also affecting detection probabilities. Subsequent modeling - supports this
premise. The results of performing model section on the detection probabili-
ties while maintaining a general model for occupancy (ie., W(Sg + S+ DW +
A)) are presented in Table 4.5. The summed model weights for the factors with
respect to detection probability are: distance to water source: 68%; aspect: 37%;
slope: 29%; and sagebrush density: 27%. Clearly, there is moderately strong
" support that detection probability is affected by distance to water and less
support for the other factors. Interestingly, note that the model with constant
detection probability (p(-), the de facto assumption when using simple logis-
tic regression) has only a very low model weight, suggesting little support for
this hypothesis.

Mahoenui Giant Weta

Weta are ancient species of the order Orthoptera (e.g., grasshoppers, crickets,
and locusts), with more than 70 endemic species surviving in New Zealand
today. Based upon fossil records, they have remained almost unchanged from
their ancestors of 190 million years ago. In the absence of native ground-
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dwelling mammals, the weta of New Zealand evolved to fulfill the roles rodents
play in other ecosystems. As such, the intreduction of rats and other small
mammals to New Zealand ecosystems with the arrival of the Maori and Euro-
peans decimated weta populations.

The Mahoenui giant weta (Deinacrida mahoenui) is endemic to the King
Country on the North Island of New Zealand, with only two surviving popu-
lations, The main naturally occurring population is restricted to a 240-ha sci-
entific reserve at Mahoenui (near the town of Te Kuiti) maintained by the New
Zealand Department of Conservation. The reserve is characterized by steep-
sided gullies and is largely covered by dense gorse (Ulex europaeus), a peren-
nial pest plant with sharp spiny stems and bright yellow flowers that can form
dense thickets, originally introduced to New Zealand as a hedging plant by the
early European settlers. The weta use the prickly gorse plants as protection
from predators and also as a food source. Goats and cattle are used to browse
the gorse, encouraging dense foliage and providing further protection for weta.

As part of a pilot study, in March 2004, 72 circular plots of 3 m radius were
surveyed for the Mahoenmi giant weta within the more accessible regions of
the reserve. Clearly, inference can only be made as to the more accessible parts
of the reserve, but this was deemed reasonable given the nature of the pilot
study. Each plot was surveyed between three and five times during the five-
day period (Kyymg = 3.6). Three different observers were used, and the study
was designed such that each observer surveyed each site at least once. This
was dore to avoid introducing heterogeneity in detection probabilities caused
by the use of multiple observers (see Chapter 6 for further discussion).

Weta were detected at 353 of the 72 plots (a naive océup‘ancy estimate of
0.49); however, often weta were only detected in one or two of the repeated
surveys, clearly indicating that detection probabilities are less than 1. There
conceivably may be a number of plots where weta were indeed present but
simply never detected during the surveys.

IHere we wish to estimate the probability of occupancy for the weta. Detec-
tion probabilities will be allowed to vary by day and also among observers, but
simpler models that do not include these effects will be included in our can-
didate set also in the interests of parsimony. Daily variation in detection prob-
abilities (or more generally, survey-specific detection probabilities) can be
easily accommodated with the design-matrix interface used in PRESENGCE 2.0
to build models. To allow detection probabilities to vary among the three
observers, two survey occasion-specific covariates were defined, Obsl and
Obs2. For site i, survey j, Obsl = 1 if the survey was conducted by observer 1,
0 otherwise; and Obs2 = 1 if the survey was conducted by observer 2, 0 oth-
erwise. Note that if the survey was conducted by observer 3, then Obsl = 0
and Obs2 = 0; thus, the third observer is considered the standard or reference
observer against which the other observers are to be compared (Table 4.6).




118

Occupancy Estimation and Modeling

TABLE 4.6 Coding Used to Define Observer Effects in

‘Mahoenui Giant Weta Example Using the Oksl and Obs2

Covariates

Survey conducted by Obsl

Observer 1 0
Observer 2 1
Observer 3 o

TABLE 4.7 Summary of Model Selection Procedure for Mahoenui Giant Weta Example

Model AAIC w NPar =21 Browse SE

Y(Browse)p{Day + Obs} 0.00 0.27 9 239.60 1.17 0.74

y()p(Day + Obs) 0.95 0.17 8 242.55

(- )p(Day + Obs + Browse) 1.81 0.11 9 24141

y(Browse)p{Day) 1.84 0.11 7 245,44 1.24 Q.75

y(Browse)p{Day + Obs -+ Browse) 2.00 0.10 10 239.60 1.17 (.89
 y(pDay) 3.19 0.06 6 248.79

w()p(Day + Browse) 3.58 0.05 7 247.18

y(Browse)p{Day + Browse) 3.81 0.04 8 245.41 1.15 (.88

y(Browse)p{Obs) 4.44 0.03 5 252.04 1.18 Q.70

y(p(Obs) 5.76 0.02 4 255.36

(- )p(Obs + Browse) 6.20 0.01 4 255.80

y(Browse)p(Obs + Browse} 6.42 0.01 6 252.02 1.25 .83

W(Browse)p(-) 6.66 0.01 3 258.26 1.23 0.72

w(ip() 819  0.00 2 261.79 e

W(Browse)p(Browse) 8.66 0.00 4 238.26 . +1.20: 0.84

y(-}p(Browse) 8.85 0.00 3 260.45 ‘

AAIC s the difference in AIC value for a particular model when compared with the top-ranked
model; w is the AIC model weight; NPar is the number of parameters; —2I is twice the negative
log-likelihood value; Browse is the value of the coefficient for the Browse variable with respect to
its effect on occupancy probability; and SE is the asseciated standard error (blank entries indicate
that the Browse variable was not included in the models).

The estimated coefficients related to the covariates Obsl and Obs2 therefore
represent the difference (on the logistic scale) between the respective observers
and observer 3. While the pilot study was not specifically designed for this
purpose, the effect of browsing on occupancy and detection probability will
also be assessed. The level of browsing at each plot was assessed by the field
crew prior to the pilot study, and a covariate Browse has been defined here as
= 1 if the plot showed evidence of sustained browsing (based upon shape of
bushes and foliage density), 0 otherwise. Therefore, our candidate set contains
16 models without considering interactions between factors (Table 4.7).
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Models are denoted with rhe relevant factors indicated in parentheses follow-
ing each probability. For example, y(Browse) indicates the probability of occu-
pancy being different for browsed and unbrowsed sites, while p(Day + Obs)
indicates that detection probability varied by day with addmve {on the logis-
tic scale) observer effects.

Testing the global model from the candidate set, \y(Browse)p(Day + Obs +
Browse), does not indicate any evidence of lack of fit using 10,000 bootstrap
samples (X = 154.1, P-value = 0.999, ¢ = 0.35), although one would perhaps
be concerned that the P-value is so close to 1.0 that it may indicate the model
“over-fits” the data (i.e., there may be t0o many parameters irf the model). As
such, no adjustment has been made to the model selection procedure (AIC)
or the standard errors of parameter estimates.

Table 4.7 presents the 16 models ranked according to AIC. The first thing
to note is that no single model is demonstrably better than the others; the five
top models are separated by less than 2.0 AIC units. As such, the AIC model
weight is distributed across a number of models, indicating that a mumber of
models may be reasonable for the collected data. There are, however, a number
of common features among the top-ranked models. The eight models where
detection probability varied daily are all ranked higher than the models
without daily variation. In terms of model weights, the p(Day) models have
01% of the total, providing clear evidence that Day is an important factor in
terms of accurately modeling detection probabilities. In terms of comparing
hypotheses, the hypothesis that the detection probability varied among days
therefore has much greater support. than the hypothesis that it was constant.
Many of the top-ranked models also contain the factor Obs for detection prob-
ability, providing evidence that the observers differed in their ability to find
weta in the plots. The combined model weight for p(Obs) models is 73%. There
is substantially less support for the hypothesis that the level of browse affects
detection probabilities, with a combined model weight of 33%.

In terms of occupancy probability, based upon rankings and AIC model
weights, the results are somewhat inconclusive about the effect of browse. The
combined weight for the W(Browse) models is 38%—in other words, similar
levels of support for the hypotheses that occupancy is/is not affected by
whether bushes withip the plots are browsed. However, there is an important
point to note that illustrates that unthinking use of model selection procedures
can be misleading. Given the biology of the situation, a priori we would expect
browsing to increase the probability of occupancy (by creating better habitat);
therefore the parameter estimate associated with the factor Browse for occu-
pancy should. be positive. This was in fact the case (Table 4.7). From the
respective models, all estimates for the Browse factor were very similar. Yet AIC
and similar metrics (and therefore the derived model weights) do not account
for the fact that one could specify a priori the direction of a particular rela-
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tionship (i.e., one could very loosely describe these model selection procedures
as “two-sided”). Therefore, one could argue that, as the estimated effect
matches our a priori expectations, the level of support for these models should
be greater than that indicated by the model weights. Unfortunately, we cannot
make any firm recommendations at this time for how one might objectively
incorporate this idea into an information-theoretic framework. As such, when
interpreting the magnitude of the various effects below, rather than taking a
model-averaging approach to account for uncertainty about which model(s)
provides the most efficient representation of the data, we only consider the
parameter estimates from the top-ranked model. We acknowledge that our
standard errors do not account for model selection uncertainty (Burnham and
Anderson 2002).

From the model w(Browse)p(Day + Obs) we have the following equations
for estimating occupancy and detection probabilities:

logit(y,) =0.02+1.17Browse; (4.11)
and:

logit(p;) = —0.23Dayl — 0.38Day2 - 1.17Day3 -~ 0.30Day4
+0.81Day5 - 1.070bsl; — 0.340bs2;

(4.12)

where Browse; is the value of the variable Browse for plot i (1 or 0);, Dayl-Day3
are just indicator variables for the day of the study; and Obsl; and Obs2; are
used to denote which of the three observers surveyed a given site on a given
day {(see Table 4.6). |

From Eq. (4.11), for an unbrowsed site logit(y,) = 0.02 (as Browse; = 0),. .
= 1.02 (:1) and a probability of occu- . .
pancy of 1.02/(1 + 1.02) = 0.50. To interpret the effect of browsing on the

which gives odds of occupancy of &**

probability of occupancy, we shall do so in terms of odds ratios (see Chapter
3). The odds ratio for a browsed site being occupied by weta is &' = 3.22;
hence, the odds of occupancy at a browsed site is 3.22 x 1.02=3.28 (1; ora
probability of occupancy of 3.28/(1 — 3.28) = 0.77). A confidence interval for
the effect of browsing could be calculated on the logit scale, then transformed
to the scale of an odds ratio. For example, given that.the standard error for
the estimated Browse effect is 0.74, an approximate two-sided 95% confidence
interval on the logit scale would be 1.17 =2 x 0.74 = (-0.31, 2.63), giving an
interval of (&%, ¢*%) = (0.73, 14.15) for the odds ratio. As mentioned in
Section 3.4, an odds ratio of 1.0 would indicate that the factor has no effect;
hence, as 1.0 is included in the confidence interval, we do not have strong evi-
dence that browsing has an effect on the probability of occupancy by weta.
Although, as it was expected a priori that browsing should have a positive
effect on occupancy, it would be more appropriate to consider a one-sided 95%
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confidence interval (calculated here by taking the lower limit of a two-sided
90% confidence interval). That is, {1.17 — 1.65 x 0.74, =) = (~-0.05, =} on the
logit scale, or (0.95, e°) in terms of odds ratios. As 1.0 is only just inside the
confidence interval, we would be comfortable in concluding that it does appear
browsing has a positive effect on occupancy, but the magnitude of the effect
is only poorly known.

In terms of an overall estimate of occupancy, for the plots surveyed we could
calculate an average from the estimated occupancy probabilities for the
browsed and unbrowsed plots, weighted by the number of plots of each type.
Here, 35 plots were classified as browsed and 37 classified as unbrowsed. An
overall estimate would therefore be:

Ssrowsed W srowsed * Stmbrowsed Wonbrowsed _ 33 X 0.77+37 X 0.50
Sarowsed T Stmbrowsed B 35+37
26.95+18.5
Con
B4
72
=0.63

This is 30% larger than the naive estimate (the fraction of plots where the
species was detected) of 0.49. Clearly, accounting for detection probability has
increased the estimated level of occupancy as expected (see below}. While not
applicable in this example due to the nature of the study design, an alterna-
tive method for obtaining an overall estimate of occupancy for the area of inter-
est would be to predict occupancy at each of the potential sampling units, For
example, suppose the area could be divided into grid cells {say) of which a
sample was surveyed and the tesulting data used to build an occupancy
model(s). If the variable information used within the occupancy model was
available for all grid cells within the regions (e.g., from GIS), then the occu-
pancy probability for each cell could be predicted, and the total level of occu-
pancy would simply be the sum of the occupancy probabilities for all grid cells
within the region of interest.

The variance (or standard error) for the overall level of occupancy can be
calculated in two steps. First, calculate the variance for a browsed and
unbrowsed plot using the delta method (Chapter 3), then combine these vari-
ance terms in the normal manner for a weighted average; that is:

2 - 2 ¥y
SBmwsedvaT(wBrnwsed ) + SUnbrmvsed Var(wUnbruwsed)

Var(il}ovemli') =

3

2
(sBrowsed + SUnbrowsed)

where the s? terms relate the number of plots squared, not a sample variance.
It is important to note that the full variance-covariance matrix is for all the s
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in the. model, both those related to the occupancy probability and those related
to detection probability. However, as the logit-link function for occupancy does
not involve the Ps from the detection probability logit-link function, when
applying the delta method to obtain the variance for an estimate of occupancy
probability, only the portion of the variance-covariance matrix that relates to
the Bs in the occupancy logit-link function need to be considered (similarly
when estimating the variance for a detection probability). Here then, we have:

_|:0.2113 —0.1521]
~0.1521 0.5495

and calculating Var(Weowses) 20d Var{(Woamowses) proceeds in a very similar
manner to the example given in Chapter 3, resulting in values of 0.015 and
0.013, respectively (we leave the derivation of these values as an exercise).
Therefore, Var(Woura) = (35 % 0.015 + 37* x 0.013)/72% = 0.007, or a stan-
dard error of 0.08.

A brief examination of the estimated detection probabilities clearly indicates
why the overall level of occupancy is estimated to be 30% larger than the naive
estimate (based simply on the number of plots where weta were detected).
Estimates for the detection probabilities for each observer on each day are
given in Table 4.8, based upon Eq. (4.12). There are clearly a reasonable level
of daily variation and substantial differences among observers. The average
estimated detection probability is 0.36, which in combination with the average
number of surveys per plot (3.6) suggests the expected probability of not
detecting weta at a plot where they are present (i.e., the probability of declar-

ing a false absence) is about (1 — 0.34)*¢=0.22, or weta would not be detected . -

at approximately 1 in 5 occupied plots. .

TABLE 4.8 Estimated Daily Detection Probabilities for Each Observer in the Mahoenui Giant
Weta Pilot Study from the Logit-link Function Given in Eq. (4.12)

Observer Day 1 Day 2 Day 3 Day 4 Day 3

1 0.21 .19 .10 0.20 0.43
0.36 0.33 0.18 0.34 0.61

3 0.44 0.41 0.24 0.43 0.69

4.5. ESTIMATING OCCUPANCY FOR A FINITE
POPULATION OR SMALL AREA

As mentioned in Section 4.1, the occupancy models developed above (and else-
where in this book) are based on the view that the sampled locations consti-
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