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Deviance plays the role of residual sum of squares in linear regression. To assess the significance of a 

factor(s), we compare the Deviance for models with and without the factor in question. You’ll see how to 

calculate the deviance for this model type on the next page. 

 
Likelihood Ratio Tests: Deviance_Reduced Model – Deviance_General Model ~chi-squared 
 
European Dippers - males only  
Reduced Model     General Model         Chi-sq.  df   Prob.    
{Phi(.) p(.) PIM}  {Phi(t) p(.) PIM}  3.000  5               0.7000  

{Phi(.) p(.) PIM}  {Phi(.) p(t) PIM}  2.378  5               0.7947  

{Phi(.) p(.) PIM}  {Phi(t) p(t) PIM}  5.414  9               0.7968  

{Phi(t) p(.) PIM}  {Phi(.) p(t) PIM}  -0.622   0               *******  

{Phi(t) p(.) PIM}  {Phi(t) p(t) PIM}  2.414  4               0.6601  

{Phi(.) p(t) PIM}  {Phi(t) p(t) PIM}  3.036  4               0.5518  

 
NOTE: the LRT works only for nested models, i.e., comparison #4 is not conceptually valid even if the test 
were possible mathematically.  
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Another role of Deviance is in testing for GOF – this will be the next major topic that we 
tackle.  Here’s a table that we’ll use to gain understanding of how the saturated model’s 
deviance and deviance df are calculated. A saturated model fits perfectly and is 
sometimes a model in the model set (e.g., S(week) in lab 1) and sometimes not (like in 
Lab 3 where we can’t run such a model but can calculate the deviance as below).  

EH         ni  Ri  

Contribution 
to DEV 
(ni*ln(ni/Ri))  

Releases & 
Re-releases 
prior to occ. 7 

Pieces of 
Information 
(rows-1) 

1111110 1   12 12 -2.4849066   6 4 

1111000 1     12 -2.4849066   4   

1100000 4     12 -4.3944492   8   

1010000 1     12 -2.4849066   2   

1000000 5     12 -4.3773437   5   

0111100 1   20 20 -2.9957323   4 3 

0111000 1     20 -2.9957323   3   

0110000 7     20 -7.3487549   14   

0100000 11     20 -6.576207   11   

0011110 1   25 25 -3.2188758   4 4 

0011100 4     25 -7.3303259   12   

0011000 8     25 -9.1154743   16   

0010110 1     25 -3.2188758   3   

0010000 11     25 -9.0307861   11   

0001111 6   22 22 -7.7956979   18 4 

0001110 3     22 -5.9772905   9   

0001100 6     22 -7.7956979   12   

0001001 1     22 -3.0910425   1   

0001000 6     22 -7.7956979   6   

0000111 10   22 22 -7.8845736   20 2 

0000110 3     22 -5.9772905   6   

0000100 9     22 -8.0443609   9   

0000011 12   23 23 -7.8070508   12 1 

0000010 11     23 -8.1135884   11   

0000001 17   17 17 0       

/* SUM 141   141 lnL -138.33957  207 18 

    -2lnL 276.679136    

 
The -2lnL value of 276.679, effective sample size of 207, and d.f. of 18 can now be 
used in comparisons and tests for fitted models. E.g., model Phi(.), p(.), has 2 
parameters and -2lnL = 318.494, the deviance is 318.494 – 276.679 = 41.815, and 
deviance d.f. = 16 (18 – 2). 
 
Discussion of Questions that some students have struggled with in past years. 

1. 
1 2 5 2 3 6 6 7

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ5 ' ,5 p's, & 1 combo. = , ,..., ,p ,p ,...,p ,  and ps       

2. Sine link gets it right: k=11.  Logit link gets it wrong: k=10.   
3. Students typically do pretty well with this one but … some forget to check the # of 

parameters in all of the models.  For part b, you could do model averaging as 
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long as you were paying attention to the problem with phi6 in the phi(t),p(t) model. 
For example, if you just do model averaging, for this parameter, you’ll see the 
following: 

 
             Apparent Survval Parameter (Phi) Group 1 Parameter 6 

Model                                     Weight    Estmate      Standard Error 

---------------------------------------- -------   -------------- -------------- 

{Phi(.) p(.) PIM}                        0.96003   0.5658226      0.0355404      

{Phi(t) p(.) PIM}                        0.02253   0.6319703      0.0796463      

{Phi(.) p(t) PIM}                        0.01650   0.5560768      0.0342813      

{Phi(t) p(t) PIM}                        0.00093   0.7637583      514.1293800    

---------------------------------------- -------   -------------- -------------- 

Weighted Average                                   0.5673361      0.5140185      

Unconditional SE                                                  15.6690091     

95% CI for Wgt. Ave. Est. (logit trans.) is 0.0000000 to 1.0000000 

Percent of Variation Attributable to Model Variation is 99.89% 

 
You don’t have much model-selection uncertainty here and so you could just use the 
best model to make inferences if you wanted to. 
 
Parameter                  Estimate       Standard Error      Lower           Upper 

 -------------------------  --------------  --------------  --------------  --------- 

    1:Phi                   0.5658226       0.0355404       0.4953193       0.6337593                      

    2:p                     0.9231757       0.0363182       0.8149669       0.9704014                      

 

4. Here’s how to calculate the probability of getting a 1000000 encounter history 
(see text on this topic on page 420 of Williams et al.). Be sure you understand. 
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So, for model phi(.), p(.) with MLE’s of phi=0.5658226 & p=0.9231757, the probability of 
an individual having a 1000000 for its encounter history is 0.4539083. 
 
In R, you’d simply type: 
phi=.5658226 

p=.9231757 

x7=1 

x6=(1-phi)+phi*(1-p)*x7 

x5=(1-phi)+phi*(1-p)*x6 

x4=(1-phi)+phi*(1-p)*x5 

x3=(1-phi)+phi*(1-p)*x4 

x2=(1-phi)+phi*(1-p)*x3 

x1=(1-phi)+phi*(1-p)*x2 

x1  # = 0.4539083 


