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WILD 502 
Lab 3 – Introduction to CJS Models 
 
This week, you’ll estimate apparent survival from live animal recaptures or resightings using the 
Cormack-Jolly-Seber (CJS) model. In addition to estimating apparent survival (φ), you will also be 
estimating recapture probability p. Keep in mind the distinction between φ and S: φ = S·F = S·(1 - 
E), where S is the probability that the animal is still alive, F is fidelity, and F equals 1 – E, where E 
is emigration. φ estimates the probability that the animal is still alive and remains on the study 
area available for recapture. Thus, φ < S. 
  
The lab exercise today takes advantage of excellent material written by Cooch and White on 
using Program MARK.  You should first review Chapters 1 and 2, which provide useful 
introductory material and will help you review basics of MARK.  To conduct this lab, you should 
carefully work through Chapters 3 and 4 of Cooch and White.  These chapters are linked from 
the course web page.  Chapter 3 won’t take long, but you’ll need to spend some quality time 
with Chapter 4 to truly understand what’s presented, i.e., don’t just run the models! 
 
The data used in this exercise were collected on European Dippers in eastern France (presented 
by Lebreton et al. 1992:85-89). Birds were banded for 7 consecutive years during early summer 
along streams, providing 6 re-encounter occasions. For this lab, you will just work with data for 
the males (ed-males.inp, which can be downloaded from the course schedule page). 
 

1. Examine the input file using notepad or other text editor of your choice.  Notice 
that there is one row for each individual.  This file could have been compressed 
into a file that reads as seen below (but without the last 2 columns).  There are 
data for 141 animals in the file.  There are 25 different encounter histories, and 
the 17 histories coded 0000001 could be deleted without losing any information. 

 
On occasions 1-7; 12, 20, 25, 22, 22, 23, & 17 new tags were put out. 
The effective sample size is the number of animals released or re-released during the study 
not counting the last year, ness = 207. 

EH n Ri "releases"

1111110 1 ; 12 6

1111000 1 ; 4

1100000 4 ; 8

1010000 1 ; 2

1000000 5 ; 5

0111100 1 ; 20 4

0111000 1 ; 3

0110000 7 ; 14

0100000 11 ; 11

0011110 1 ; 25 4

0011100 4 ; 12

0011000 8 ; 16

0010110 1 ; 3

0010000 11 ; 11

0001111 6 ; 22 18

0001110 3 ; 9

0001100 6 ; 12

0001001 1 ; 1

0001000 6 ; 6

0000111 10 ; 22 20

0000110 3 ; 6

0000100 9 ; 9

0000011 12 ; 23 12

0000010 11 ; 11

0000001 17 ; 17

/* SUM 141 */ 141 207

http://onlinelibrary.wiley.com/doi/10.2307/2937171/full
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2. Open MARK and work your way through Chapter 3 of Cooch & White.  Much of this 
chapter will be old hat for you as you’ve already worked with MARK but … the chapter is 
well written and may help clear up some nagging confusion! 

a. Note the confounding of φ6 and p7.  We will discuss this further (see Chapter 4 
of C&W). 

b. Read the material on the Likelihood Ratio Tests.  We won’t work with 
significance tests but it’s a nice reinforcement of material we covered earlier on 
the limitations of this approach to model selection. 

3. Next, work your way through Chapter 4 of Cooch & White.  This chapter will be a little 
more challenging for you as it introduces some new ideas and is, in a few places, a bit 
ahead of lecture.  Also, some of the sidebars are quite technical and beyond our scope. 

a. Review the connections among PIMs, the Design Matrix, the link function, and 
the estimates of the real parameters.   

i. Because we use an identity matrix as the design matrix for every model 
being run this week, we can use the ‘sine’ link.  This link function is the 
default choice when an identity matrix is used because when it’s used 
MARK does a better job of counting how many parameters were 
estimated.  

ii. It’s important to keep track of which link function was used when you 
go to transform the beta’s into the real parameters.  Fortunately, it’s 
easy to do: you just have to remember to do it.  One way is to look at 
the 2nd line of text in the beta estimates window. 

 

iii. For the SIN link function, an estimated beta for a real parameter is 
converted to an estimate of the real parameter using the equation: 

ˆ(sin( ) 1) / 2real   .  Try this for the 1st beta estimated in the table above 

and you’ll obtain the estimate of 
1
ˆ 0.697  as long as you work in 

radians.  In R, you can just type, (sin(0.4049138)+1)/2 # = 0.6969698 
 

b. Be sure you understand how the CI’s for the real parameters are obtained and 
why this is so.  We have discussed this for known fate models, and it operates 
the same in CJS models.  For the models used this week where only 1 beta is 
used to estimate each real parameter, it’s easy to do: just use the CI’s on the 
betas and the appropriate transform (sine or logit) to obtain real parameter CI’s. 
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c. Be sure you understand how the likelihood function for this multinomial process 
looks for each model.  That is, consider what each model is saying about time 
variation in φ and p.  Then consider again why we’re doing maximum likelihood 
estimation and what the -2lnL scores are used for. 

d. Consider how the -2lnL value for each model and model structure (# 
parameters) is used to obtain AIC and AICc values. 

e. Work through how ΔAICc values and AICc weights are obtained and how they 
are used.  The text in chapter 4 of C&W is very helpful on these topics.   

f. The -2 log likelihood for the saturated model is needed to compute the 
deviance.  For CJS models, this is computed using each of the observed 

encounter histories.   For each encounter history, the quantity  ln j

j

n

j R
n  is 

computed, and then these values are summed across all encounter histories 
(and groups, if multiple groups are used).  Thus, the lnLsat = -138.34 

         

       

   

 

51 1 4 1

12 12 12 12 12

71 1 11

20 20 20 20

12 11

23 23

17

17

1 ln 1 ln 4 ln 1 ln 5 ln

1 ln 1 ln 7 ln 11 ln

...

12 ln 11 ln

17 ln

138.34

         

       

   

 



 

-2lnLsat = 276.68  

i. Note that:  17
17

17 ln 0  and so contributes nothing to the likelihood, 

i.e., the encounter history 000001 didn’t help us estimate anything. 
ii. 276.68 is the –2lnL for a model that fits perfectly, i.e., it’s analogous to a 

line fit to 2 data points, and can be used as a baseline for evaluating the 
fit of other models, i.e., by measuring how much worse their -2lnL score 
is than 276.68. 

 

Models that fit better have higher Likelihood values.  Likelihood values are usually small positive numbers 
(e.g., 0<L<1). Thus, lnL values are typically negative numbers, and better models have higher lnL values.  
E.g., L1=.8, lnL1=-0.22; L2=.4, lnL2=-0.92.  When converted to -2lnL values, things reverse! 
Models that fit better have smaller -2lnL values: -2lnL1=0.446 and -2lnL2=1.833.  
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g. Here’s how to obtain the graphics described in chapter 4.  

 

h. Text in the Addendum to Chapter 4 of C&W (starts on page 4-70) is very useful 
regarding how the number of estimated parameters is determined (though 
some of it does get quite technical and might take some solid math 
background).  The text in the Addendum regarding non-identifiable parameters 
is also very well written and worth working through carefully. 

i. Text starting on page 4-33 of C&W provides a nice overview on working with 
ΔAICc to compare models and make inferences in the face of model-selection 
uncertainty.   We won’t get into BIC, LRT much but at least you can read of them 
and gain some exposure to the ideas that other model-selection methods exist. 

 

1. Highlight the model of 

interest and then click on 

this icon 

2. Fill in the numbers 

for the parameters 

that you want plotted 

Some rules of thumb for interpreting ΔAICc (from text starting on C&W 4-39) 
When using AIC values, how much ‘support’ is there for selecting one model over the other? When the 
difference in AIC between 2 models (ΔAIC) is < 2, then we are reasonably safe is saying that both models 
have approximately equal weight in the data. If 2 < ΔAIC < 7, then there is considerable support for a real 
difference between the models, and if ΔAIC > 7, then there is strong evidence to support the conclusion of 
differences between the models.  The ΔAIC values can be used to calculate relative model weights, too. 
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Your homework assignment 

1. For a study with 7 occasions, use words, graphics, or both to explain  

a. How many ˆ
i and ˆ

ip  exist and  

b. How many of those can be estimated if data are present for all occasions.  
2. Run the pre-defined φ(t),p(t) model using the sine link.  

a. How many parameters are listed as having been estimated in the Results Browser?  
b. Run the model again but this time use the logit link. Now how many parameters are 

listed as having been estimated in the Results Browser?  Take a look at the 
parameter estimates and their estimated standard errors. Can you find a parameter 
estimate that’s on a boundary? Which is it, and what is its value and SE? 

c. For the model run using the logit link, adjust the number of parameters to the 
appropriate number. Once this is done, report on how the AICc values compare for 
the model run with the sine link vs. the logit link.  

d. What is the MLE for ˆ
ip for occasion 3? From looking at the input data and the model 

structure, explain why this value makes sense. 
3. Clean up the list of models in the Results Browser so that only the following 4 models are 

listed: φ(t),p(t);  φ(t),p(.); φ(.),p(t);  and  φ(.),p(.) 
a. Provide a modified version of MARK’s AIC table that also includes 3 other columns: 

the -2lnL, lnL, and L value for each model. 
b. Based on ΔAIC values and model weights, what evidence is there for temporal 

variation in φ and p, and how strong is that evidence?  
c. What can you learn about φ6 from each model in the set of 4 models?  
d. What inferences can you draw about φ and p from this study and how certain are 

you of those inferences (express the uncertainty as you see fit).  
4. Given the MLE’s for the best model in the list, what is the probability of observing each of 

the following encounter histories (show your calculations):  
a. 1111111   
b. 0011001   
c. 0001101  

5. What does the Mij
 
array look like for this study? MARK will provide it to you if you click on 

‘Output’, then on ‘Input Data Summary’ on the top menu. 
6. What do the numbers in the Mij

 
 array represent and how do they relate to the encounter 

histories and effective sample size?  
7. Use page 421 of your textbook, the input data, and estimates for model φ(.),p(.). 

a. What is the formula for calculating the expected number of recaptures in the Mij
 

array for animals released on the occasion 1 and first recaptured on occasion 3?  
b. What is the expected number of recaptures in the Mij

 
array for animals released on 

the occasion 1 and first recaptured on occasion 3? Show your work. 
8. Using 2 examples for species that you are interested in, and familiar with, describe scenarios 

where CJS modeling of φ and p would be:  
a. a useful way to learn about survival in some species, and  
b. not a useful way to learn to learn about survival in some species. 

9. Provide a reference to 1 paper in the ecological literature from the past 5 years that used a 
CJS modeling approach to investigate survival rates.  Provide a very brief summary of the 
question that they addressed, the length of the study, the number of animals studied, and 
the main conclusion of the work. 


