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WILD 502  
Lab 11 – Occupancy models for single‐species, multi‐season  
 
Today’s lab will be based on analysis of northern spotted owl data presented in MacKenzie et 
al. (2003). The modeling you’ll do follows what is presented on pages 209-212 of the book 
titled, “Occupancy Estimation and Modeling”by MacKenzie et al. (2006). The emphasis is on 
how you can examine changes in occupancy and equilibrium issues with this model type. The 
dataset consists of detection/non-detection of northern spotted owls on multiple sites in multiple seasons 
(first year = 1997).  We will model rates of (1) occupancy, (2) detection, (3) colonization, and (4) 
extinction.  Here, we’ll use the parameters ψ for occupancy rate, p for detection rate, γ for colonization 
rate (going from un-occupied to occupied from 1 year to the next), and ε for the local extinction rate 
(from 1 year to the next).  Given this, (1 )ε−  is the rate at which occupied sites remain occupied, and 
(1 )γ−  is the rate at which un-occupied sites remain un-occupied. Given the background you have in 
robust design, you should be able to see that the probability that a site is occupied at time t+1 may or may 
not depend on its occupancy status in time t+1, i.e., be either 1st-order Markovian ( (1 ))γ ε≠ − or random 
( (1 ))γ ε= − . 
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Set up a new analysis in MARK using “Robust Design Occupancy” as the Data Type. When you do this, 
a 2nd window opens where you can pick the parameterization that you want to use.  We’ll start with a 
parameterization that works with initial occupancy ( 1997ψ ), γt, and εt (as well as psession, t).  In this 
parameterization, estimates of 1998 1999 2000, ,...,ψ ψ ψ , and the annual rate of change in occupancy rates 
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are derived quantities that MARK calculates from ( 1997ψ ), γt, and εt as you’ll see. 

 
You need to tell MARK that there are 40 occasions (5 primary sessions with 8 secondary occasions per 
primary occasion). There is 1 group and no covariates for this problem. 
 
Look at the PIM chart for the default model. You’ll see that there is a single ψ (it’s for 1997, i.e., the 1st 
year of the study) and time-varying values for all other parameters.  The authors found evidence that p 
varied by year but was constant across secondary occasions within each year. Thus, you can set the PIM 
for p within each session to be constant: we’ll call this “p(year, .)” and use it in all of our models. 

 
         Ψ’97 εt             γt     p’97    p’98   p’99  p’00   p’01 

Cascades Raptor Center



Page 2 of 5 
 

We will evaluate hypotheses represented by 6 different models.   
 
• Model 1 = no change in occupancy =1. (1997), ( ,.)p yearψ , which hypothesizes that the occupancy 

status doesn’t change among years.  You can achieve this by (a) setting the values in the PIMs for ε 
and γ as constant and (b) fixing ˆ ˆ,& γ ε = 0 when you run the model (do this on the 'Setup Numerical 
Estimation Run' window by using the ‘Fix Parameters’ button). 

 
• Model 2 = random changes in occupancy = 2. (1997),  (1 ), ( ,  .)p yearψ ε γ= − .  This may not apply 

well to this species, but it is a model of interest if you think that the probability that a breeding pair 
will occupy a site in the next year is independent of whether the site is occupied or not in the current 
year (such as might be expected if site fidelity is low or site choices are made at random over the set 
of sites being studied).  To get at this hypothesis, set (1 )ε γ= − in each year.  In Model 2, hold 
colonization and extinction rates constant through time. In Model 3, you’ll allow colonization and 
extinction rates to vary across years.  By comparing results for Models 2 & 3, we can evaluate 
whether colonization and extinction appear to be time-varying or not.  

o It may not be obvious at first how you can achieve the desired constraint ( (1 )ε γ= − ). But, it 
turns out that your logistic regression background will help you see how the trick works. 
First, consider the Design Matrix you’ll use for Model 2. 

 
o To see how this works, consider the following.   

 exp( 3) 0.047
1 exp( 3)

− =
+ −

 

 

 exp(3) 0.953
1 exp(3)

=
+

 

 

o This trick works with covariates as well – consider the following. 

 
 exp( 0.135 0.4 4) 0.15

1 exp( 0.135 0.4 4)
− − × =

+ − − ×
 

 

 exp(0.135 0.4 4) 0.85
1 exp(0.135 0.4 4)

+ × =
+ + ×

 

 

o And, this trick also works with the sine link function because, like the logit link function, it 
too is symmetric about 0.5 (you can look at the MARK help file for further information). 
 

• Model 3 = random changes in occupancy = 3. (1997),  (year){ (1 )}, ( ,  .)p yearψ γ ε γ= − .   One way to 
evaluate equilibrium is by checking whether colonization and extinction rates vary in time, i.e., 
compare Models 2 & 3. (Another way, as nicely discussed by MacKenzie et al. in their book is to 
check whether or not occupancy rates are constant through time; the 2 approaches are not equivalent 
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and both can be evaluated). If local extinction and colonization rates are constant, the population’s 
occupancy rate may be at, or headed for, an equilibrium level. To achieve Model 3, (a) make the 
PIMs for ε and γ to be time-varying and (b) use the following Design Matrix. 
 

 
 

• Model 4 = 4. (1997),  (.), (.), ( ,  .)p yearψ γ ε - this model does not set (1 )ε γ= −  and thus the 
probability of being occupied at time t+1 is allowed to depend on the occupancy state at time t, i.e., it 
can follow a 1st-order Markovian process.  Think about this for a bit: if extinction rate ( )ε is different 
from (1 )γ− (which is the rate at which empty patches stay empty), (or conversely, if (1 )ε− is 
different fromγ ), then the probability that a site will change states depends on what state it is in 
currently.  Model 4 holds the local extinction and colonization rates constant while allowing them to 
be different from one another.  To set this model up, you can just set each PIM to be constant and run 
the model using an Identity Matrix. 

 
  t 
  Occupied Not occupied 

t+1 Occupied (1 )ε−  γ
Not occupied ε  (1 )γ−  

 
 
 
 
 
 
 
• Model 5 = 5. (1997),  (year), ( ), ( ,  .)year p yearψ γ ε - this model allows local extinction and 

colonization rates to be different from one another and to vary over time, which is a non-equilibrium 
version of Model 4.  This means that Model 4 can be seen as the equilibrium version of this pair. 

 
• Model 6 = 6. (.),  (.), ( ,  .)p yearψ γ , which like Model 1 and unlike Models 2-5 suggests that 

occupancy is constant over years.  This model allows colonization to occur but holds it constant 
through the years.  For occupancy rate to be constant, the local extinction rate must also be constant.  
If this is true, then local extinction rate ( )ε  is defined completely by occupancy rate ( )ψ and 

 Markovian 
example 

t 
 Occupied Not occupied 

t+1 Occupied 0.8 0.6 
Not occupied 0.2 0.4 

Non-Markovian 
example 

t 
Occupied Not occupied 

t+1 Occupied 0.8 0.8 
Not occupied 0.2 0.2 
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colonization rate ( )γ , where (1 )ψε γ
ψ
−= ⋅ .  Think about why this must be so.  If occupancy rate 

doesn’t change over time and colonization occurs, then any colonization events must be offset by 

extinctions such that (1 )ε ψ γ ψ⋅ = ⋅ − , which can be re-written as (1 )ψε γ
ψ
−= ⋅ .   

Because ε is a derived parameter in this model, we drop it from the model name to make that point 
clearer.  To run this model, we need to use a different parameterization for the data that allows us to 
model ψt directly and to estimate εt as a derived parameter. To do this, click on the PIM menu, choose 
“Change Data Type”, and select the 2nd option.  
 

 
Even though we are changing the parameterization, the AICc values are still comparable for Model 6 
and the preceding models as the parameterizations are based on the same likelihood.  
 
To run Model 6, you can make each of the PIMs have constant values and run the model using an 
identity matrix.  

 
The modeling should provide you with the following results.  
 

Model K -2log(L) 
1. psi1, p(yr, .) 6 1542.564
2. psi1, gamma(.), eps(=1-gamma), p(yr, .) 7 1429.532
3. psi1, gamma(yr), eps(=1-gamma), p(yr, .) 10 1429.320
4. psi1, gamma(.), eps(.), p(yr, .) 8 1337.523
5. psi1, gamma(yr), eps(yr), p(yr, .) 14 1327.639
6. psi(.), gamma(.), p(yr, .) 7 1337.951

 
 
 
Assignment 
 
1. How many total sites were used in the study? 

2. Were all sites were visited on all occasions or not? If they were not, how often does it appear that 
most sites were visited (just a ballpark estimate from looking at the data for a bit). 

3. What are your annual estimates of p per occasion and p* based on the typical number of visits made 
per site per year?  Based on those estimates, does it appear that one can count on having p* = 1.0 if 
one does 5 surveys in any year, most years, all years? Explain. 
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4. Provide your estimates of ψ (SE) for each year for each model. 

Model 
1997ψ (SE) 1998ψ (SE) 1999ψ (SE) 2000ψ (SE) 2001ψ (SE) 

1      
2      
3      
4      
5      
6      

 

5. Do the results indicate that naïve estimates of occupancy would be badly biased in this species? 
Explain. 

6. Using the estimates of  1997ψ , γt, and εt produced by model 5, show how to calculate the derived 
estimates of occupancy rate for 1998 through 2001. 

7. Based on the results, does it appear that colonization and extinction are important processes for this 
species? Explain. 

8. In the top model, what is the extinction rate and how is it derived?  Based on the results for the top 
model, how many sites are expected to change occupancy status each year? Show your work. 

9. In one paragraph, please describe what you learned about the 6 hypotheses described by the 6 
competing models based on this dataset. 

10. Provide a brief example of a scenario where this modeling approach would be useful for a problem of 
interest to you. 


