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Lecture 15: Density-dependent population growth: Populus Simulations 
 
The lecture presented two versions of the logistic population growth equation: one for 
continuous breeding seasons, and one for discrete breeding seasons.   In this computer 
exercise, you will simulate population growth with these two equations, and a third 
equation that incorporates a time lag in the feedback of population density on the 
population’s growth rate.   
 
The continuous logistic equation always produces a sigmoid (S-shaped) population 
growth curve, with dN/dt initially low (because there are few individuals in the 
population), then steepening (faster growth) as the population grows, then slowing and 
ultimately dropping to zero as the population reaches carrying capacity (as N→K).  But 
discrete breeding seasons and time lags can give very different results.  In these two 
cases, the density-dependent change in dN/dt does not respond immediately to the current 
population size (Nt), rather, it responds to population size at some earlier point in time.   
 
With discrete breeding seasons, the change in dN/dt is in response to population size one 
year (with lambda, λ) or one generation (with R0) earlier.   
 
In the ‘time-lagged continuous’ version, you can define the delay in the response of dN/dt 
to N.  Lags can be longer than a generation in some cases.  For example, there is a 
phenomenon called the 'grandmother effect', documented in white-tailed deer and some 
rodents.  If conditions were good when X's grandmother was gestating X's mother, then 
X's mother tends to produce offspring that survive and breed well.  This effect causes a 
two-generation time lag in density dependent effects on dN/dt. 
 
The goal of these simulations is to show that: 
 
A. With continuous breeding and no time lag in the response of growth to density, 

logistic growth always gives a sigmoid population growth curve, regardless of the 
values of K and r. 

 
B. Discrete breeding seasons and time lags alter this result.  Population dynamics can be 

very difficult to predict (chaotic) for some combinations of K and r.   
 
C. The fact that many different kinds of population dynamics arise simply by shifting the 

values of r and K in a the logistic equation means that most of the population 
dynamics observed in the real world might be explained by density-dependent 
processes that affect birth and death rates.   

 
Very complex population dynamics can come from: 
 

1. Very simple population growth equations,  
 
2.  With no random component - the equations are completely determinisitic, 
meaning that the same set of input numbers will give exactly the same output 
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population dynamics, again and again.  'Chaotic' is not the same as 'random'.  
Chaotic dynamics are difficult to predict, but are repeatable.  Random dynamics 
are (also) difficult to predict, but are not repeatable. 
 

1. Map to the network drive:  \\hopper\labshare 
(right click “My Computer” to do this) 
 
2.  Launch Populus 5.3 in the BIOL 405 folder (the filename is ‘run’) 
 
3.  Select Single species dynamics from the main menu. 
 
4.  Select Density independent population growth from the submenu.  Read the help 
menu notes on this model.  
 
Briefly investigate the exponential growth model  
 
Click ‘view’ to see the graphs.   
Be sure you understand what each of the four plots shows you.   
You can simultaneously view several sets of parameter values by clicking the A,B,C and 
D buttons. 
 
5. Now select  Density dependent population growth from the submenu, and read the 
help menu notes on these models. 
 
You view this model in the same way as before, and again, you can see several sets of 
parameter values simultaneously, for each of 4 output graphs.  Understand them all. 
 
6.  Start with the model for continuous breeding seasons, accepting the default values: 
 
Initial Population N0 = 5  Carrying capacity K = 500 
Per capita growth rate r = 0.2  Time lag T = 0 
 
Press Enter to accept these values and run the simulation.  A plot of dN/Dt (growth rate) 
versus N population size pops up.  Examine all of the graphical output for the model, and 
make sure you understand the information they give. 
 
7. Re-run the model for continuous breeding seasons several times, increasing the value 
of r each time, using a broad range of values (perhaps 0 to 3).  Note how the results 
change. 
 
8.  Now select the model for discrete breeding seasons, which automatically creates a 
time lag in the density dependent feedback of N on dN/dt, accepting the default values: 
 
Initial Population N0 = 5  Carrying capacity K = 500 
Per capita growth rate r = 0.2  Time lag T = 1 year (grayed out) 
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These are the same conditions as before, except that dN/dt is affected by N in the prior 
year, rather than the current population size.  Population growth is slowed down as 
density goes up and competition for resources increases… but there is a delay between 
the change in density and the change in population growth rate.  This commonly happens 
in long lived organisms: for example, the effect of severe competition for food can affect 
next year’s birth rate, or even the birth rate two years later. 
 
Run the simulation (press Enter), and you’ll see population growth very similar to the 
results for the model without time lags. 
 
9. Re-run the model with time lags several times, increasing the value of r each time,. 
Note how the results change. 
 
a.  Increase r by 0.1 each time, from 0.3 through 0.9. 
b.  Run several times shifting r from 1 through 3. 
c.  Run with r = 4. 
 
10.  Hopefully, you’ve now seen that time lags (discrete growth) allow the population to 
‘overshoot’ K, and that the effects of the overshoot become wildly unpredictable as the 
population growth rate increases. 
 
11.  Now select the time lagged model, and run a set of simulations that explore the effect 
of varying each parameter in the model. 
 
a.  Lengthening or shortening the time lag (2 generations by default)  
b.  Altering initial population size (N0) or carrying capacity (K). 
 
 
Consider the different results you obtained for three cases of logistic population growth.  
All of these simulations used the basic logistic (or  density dependent) model.  The only 
difference is the distinction between discrete and continuous breeding seasons, or 
between time lags of one generation (in the discrete breeding season case) and longer 
time lags. 
 
These differences highlight the importance of using a model that incorporates the correct 
life-history for the organism under study. 
 
 
 


