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Abstract: Climate change will likely have profound effects on cold-water species of freshwater fishes. As
temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of
projected stream warming in stream networks is complicated by the generally poor correlation between water
temperature and air temperature. Spatial dependencies in stream networks are complex because the geography
of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting
climate-driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We pre-
dicted climate-induced changes in summer thermal habitat for 3 cold-water fish species—juvenile Chinook
salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus,
respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical
model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity.
The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely
governed by solar radiation and interannual extremes of air temperature. For a moderate climate change
scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull
trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able
to offset these projected effects, such forecasts point to how and where restoration and management efforts
might focus.
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Proyección de la Pérdida de Hábitat de Salmónidos Inducida por el Clima con Base en un Red de Modelos de la
Temperatura de Arroyos

Resumen: Es probable que el cambio climático tenga profundo efectos sobre especies de peces dulceacuı́colas
de agua fŕıa. A medida que incrementa la temperatura, la distribución de peces de agua fŕıa puede cambiar
y contraerse en respuesta. La predicción de efectos del calentamiento proyectado en redes de arroyos es
complicada debido a la baja correlación entre la temperatura del agua y la temperatura del aire. Las
dependencias espaciales en las redes de arroyos son complejas porque la geograf́ıa de los procesos en los
arroyos esta determinada por las dimensiones en la dirección del flujo y por la estructura de la red. Por lo
tanto, la predicción de cambios dirigidos por el clima en la biota de arroyos está rezagada en comparación con
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lo esfuerzos de modelado terrestre. Pronosticamos cambios inducidos por el clima en el hábitat térmico de 3
especies de peces de agua fŕıa – Oncorhynchus tshawytscha, O. mykiss y Salvelinus confluentus – en la Cuenca
del Rı́o John Day, en el noroeste de Estados Unidos. Utilizamos un modelo estadı́stico espacialmente expĺıcito
diseñado para pronosticar la temperatura del agua en redes de arroyos con base en el flujo y la conectividad
espacial. La distribución espacial de los extremos de temperatura en los arroyos durante los veranos de
1993 a 2009 estuvo determinada principalmente por la radiación solar y los extremos interanuales de la
temperatura del aire. En un escenario de cambio climático moderado, estimamos que las declinaciones en
2100 en el volumen de hábitat de Oncorhynchus tshawytscha, O. mykiss y Salvelinus confluentus fueron
de 39–95%, 51–87% y 86–100%, respectivamente. Aunque algunas estrategias de restauración pueden ser
capaces de compensar estos efectos proyectados, tales predicciones apuntan hacia como y donde se pueden
enfocar los esfuerzos de restauración y manejo.

Palabras Clave: cambio climático, extremo de verano, hábitat térmico, modelo espacial, red hidrológica

Introduction

Changing climate has caused systemic reorganization of
many ecosystems globally (Parmesan 2006), and both re-
cent and projected changes have promoted heightened
interest in the vulnerability of freshwater organisms (Poff
et al. 2002; Heino et al. 2009). Trout, char, and salmon
(Salmonidae), as cold-water stenotherms, represent some
of the freshwater species most sensitive to increases in
temperature. This sensitivity, combined with their cur-
rent status, has drawn attention to climate-related re-
search on salmonids (Ruckelshaus et al. 2002; Schindler
et al. 2003). Results of previous studies show that mea-
suring and forecasting climate-driven changes in stream
environments is difficult because the spatial structure of
river networks is complex (Heino et al. 2009). Research
investigating the effects of climate change on freshwa-
ter salmonid habitat generally focuses on coarse spatial
resolutions at which network structure may be irrele-
vant (Eaton & Scheller 1996; Keleher & Rahel 1996),
and on migration within downstream reaches, where
temperature variability is often limited (e.g., Quinn &
Adams 1996). However, flow and water temperatures in
headwater reaches (where juvenile and oversummering
salmonids often occur) tend to be more susceptible to
weather extremes during summer months. Therefore, po-
tentially intensified weather events due to climate change
may compromise the probability of persistence during
these life stages (Mantua et al. 2010).

Increases in summer stream temperature may re-
duce thermal habitat to only the coolest pools, tribu-
tary junctions, and headwater reaches (Crozier et al.
2008). In the southern extents of salmonids’ ranges,
thermal habitat for juveniles is reduced substantially
in summer (Ebersole et al. 2001). Several researchers
have empirically documented thermal tolerances of rain-
bow trout (Oncorhynchus mykiss), Chinook salmon (O.
tshawytscha), and bull trout (Salvelinus confluentus)
(Eaton et al. 1995; Dunham et al. 2003; Wenger et al.
2011). The primary challenge for forecasting the effects
of climate change on the distribution of thermal habi-

tat is to model spatial and temporal variability of stream
temperature.

Many attempts have been made to quantify the com-
plexity of stream temperature with mechanistic models
that compute stream temperature from energy-budget
equations (e.g., Chen et al. 1998) and correlative models
that incorporate a set of covariates that either directly
or indirectly influence stream temperature (reviewed
by Webb et al. 2008). In general, correlative models of
stream temperature fail to address the spatial connectivity
between locations in the stream network. The physical
characteristics of any stream location (including stream
temperature) may be highly autocorrelated, particularly
when locations are connected by flow (Cooper et al.
1997). Recently, geostatistical network models have been
developed, which incorporate flow-dependent, network-
based theory and have resulted in more accurate predic-
tions when data are spatially correlated (Webb et al. 2008;
Isaak et al. 2010; Peterson & Ver Hoef 2010). Because
many abiotic and biotic processes depend on annual,
seasonal, and diel fluctuations in stream temperature
(Caissie 2006) and stream temperature is often depen-
dent on landscape and climate characteristics that can be
remotely sensed, network-based geostatistical methods
allow one to assess climate-induced changes in thermal
habitat both more efficiently and with greater precision
than with ordinary least-squares regression.

We built and applied a geostatistical network model
of stream temperature to forecast potential climate-
induced changes in the availability of thermal habitat
for 3 salmonid species of conservation concern through-
out a river network. We sought to quantify potential
loss of summer habitat for juvenile spring-migrating Chi-
nook salmon, juvenile summer-migrating rainbow trout
(although resident rainbow trout occur sympatrically),
and all life stages of bull trout. Using predictions of stream
temperature, we inferred where thermal habitat exists
on the basis of empirically derived thermal tolerances
(Eaton et al. 1995; Rieman & Chandler 1999) and fore-
casted changes in the spatial distribution of that habitat
in the future. We aimed to advance understanding of how
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threatened cold-water fish species will be affected by a
warming climate. To do so, we increased the resolution
of predictions of stream temperature on the basis of a
new modeling framework and investigated differential
responses of 3 salmonid species at the margin of their
thermal range.

Methods

Study Area and Focal Species

The John Day River is an unimpounded tributary of the
Columbia River in north-central Oregon (U.S.A.) (Sup-
porting Information). The John Day basin encompasses
a large drainage area (21,000 km2) and supports warm-
water fish species in the lower reaches and cold-water
species in the headwaters (Torgersen et al. 2006). The
lower reaches are dominated by cyprinids, catostomids,
and nonnative centrarchids, whereas the upper reaches
are dominated by salmonids. Juvenile Chinook salmon
and rainbow trout occupy thermally marginal reaches
during the summer months when temperatures peak.
Therefore, our modeled results are only applicable to
that life stage. Bull trout require cold water, which is lim-
ited to the upper reaches of the basin, and we included
all life stages of this species in our model.

Wild anadromous rainbow trout (i.e., steelhead) of the
John Day River are listed under the U.S. Endangered
Species Act (ESA) as a threatened evolutionarily signif-
icant unit of the middle Columbia River basin in the
Pacific Northwest (U.S.A.). The upper John Day River
contains critical habitat for steelhead. Chinook salmon in
the lower Columbia River are listed as a threatened evo-
lutionarily significant unit under the ESA. The John Day
River supports one of the last remaining robust popula-
tions of wild Chinook salmon in the Columbia River basin
(Carmichael et al. 2001), and it may be a source popu-
lation for those populations that are threatened with ex-
tirpation in downstream main-stem reaches. Under the
ESA, bull trout are listed as threatened within the conter-
minous United States, but throughout most of the John
Day watershed they are at risk of extirpation due to cli-
mate change (Rieman et al. 2007).

Stream Temperature Modeling

Our approach to modeling the potential change in ther-
mal habitat for salmonids had 3 components: model-
ing stream temperature as a function of landscape and
climate (Supporting Information), modeling and subse-
quently forecasting stream temperature as a function of
landscape and climate with specific emphasis on chang-
ing air temperature, and calculating lost habitat on the
basis of whether thermal-tolerance temperatures were
exceeded. To identify thermal habitat, we used empiri-
cally derived (Eaton et al. 1995; Pacific Northwest U.S.

database, Dunham et al. 2003) thermal tolerances of
each of the 3 salmonid species. We based these toler-
ances on the maximum weekly mean stream temperature
(MWMST) (yearly maxima of a 7-day moving average) for
each species. To this end, we built a statistical model to
predict MWMST:

MWMSTY = max
t,Y

{(
T t−3 + T t−2 + · · · + T t+3

)
/7

}
,
(1)

where T is the mean temperature observation at day t and
year Y . We collected stream temperature data with dig-
ital temperature loggers accurate to within 0.53 ◦C (Tid-
bit, Water Temp Pro, and Hobo Pendant, Onset, Cape
Cod, MA, U.S.A.). In collaboration with the Northwest
Fisheries Science Center (National Oceanic Atmospheric
Administration), we compiled data from 298 indepen-
dent data-collection events from 1993 to 2007 (Support-
ing Information). All data-collection events represented
continuous sampling from 21 June through 21 September
within a single year from 1993 to 2009. Sampling intervals
were ≤60 minutes, and MWMST was ≤30 ◦C (Dunham et
al. 2005). We assumed that recorded temperatures above
30 ◦C were air temperatures.

We compiled a set of candidate covariates (Support-
ing Information) of stream temperature previously iden-
tified in the literature (Caissie 2006; Webb et al. 2008)
and appended them to the NHDPlus data set (Environ-
mental Protection Agency and Horizon Systems 2008).
We retrieved most covariates from NHDPlus value-added
attribute tables. To compute covariates that were not in-
cluded in NHDPlus, we used a combination of ArcGIS
Desktop (version 9.3.1) (ESRI 2009), NHDPlus CA3T
(Horizon Systems 2008), and R statistical software (R De-
velopment Core Team 2010). We undertook exploratory
analyses of potential covariates of MWMST by visually ana-
lyzing bivariate scatterplots and log-transforming skewed
distributions. We used the covariates that exhibited the
closest relation to MWMST to develop a set of a priori can-
didate models (Burnham & Anderson 2002) (Supporting
Information). In each candidate model, only one metric
of air temperature (or any variable closely correlated with
air temperature) was included. We used nonspatial linear
models for candidate model selection because they are
more computationally efficient to fit than geostatistical
models. Also, nonspatial model selection tends to include
additional covariates that may not be significant within
a geostatistical model, rather than omitting potentially
significant covariates (Ver Hoef et al. 2001).

Variables that fit the above criteria (i.e., cumulative ri-
parian solar exposure [CRSE] and maximum weekly max-
imum air temperature [MWMAT]) are described below
(see Results section and Table 1 for the functional form
of the final model). We computed CRSE from 3 data sets:
mean annual solar radiation (modeled with ArcGIS Solar
Analyst), percent canopy cover derived from LANDFIRE
(Rollins et al. 2006), and potential riparian land cover
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Table 1. Summary statistics of the covariates of the geostatistical model for predicting maximum weekly mean stream temperature (MWMST) in the
John Day River network.∗

Parameters n Units Minimum Maximum Mean Estimate (SE)

Intercept −13.2 (3.5)
Log(CRSE) 165 log(GW/year) 1.8 13.9 9.2 1.4 (0.1)
MWMAT 13 ◦C 31.5 35.5 33.7 0.6 (0.1)

∗Predictions were based on log-transformed cumulative riparian solar exposure (CRSE) and maximum weekly maximum air temperature
(MWMAT).
Abbreviation: GW, gigawatts.

extracted from the LANDFIRE biophysical settings data
set. We computed CRSE as follows:

CRSE =
∑

p

R p Sp(1 − C p), (2)

where R is the riparian land cover (1, riparian; 0, non-
riparian), S is the solar radiation, and C is the percent
canopy cover at every pth pixel. We then summed the
product of R p Sp(1 − C p) by accumulating values down-
stream with CA3T. The final CRSE data product was a
model of the accumulated solar radiation that penetrates
through canopy cover and reaches the stream.

To calculate MWMAT, we gathered daily records from
4 Western Regional Climate Center Remote Automatic
Weather Stations (WRCC 2010): Case, Board Creek, Fall
Mountain, and North Pole Ridge. For each year, Y (Y =
1993–2009), we calculated MWMAT as

MWMATY

=

4∑
W=1

[
max

t

{(
TW,t−3 + TW,t−2 + · · · + TW,t+3

)
/7

}]

4
,

(3)

where Tw,t is the maximum air temperature observed at
a weather station, W (station 1, 2, 3, or 4), on day t.

Geostatistical Network Model of MWMST

Our data were spatially autocorrelated due to the rela-
tively large number of observations collected within a sin-
gle catchment. Analyses of spatially autocorrelated data
require spatial statistical methods because the assump-
tion of independence is violated, and thus many con-
ventional statistical methods are inappropriate (Legendre
1993). Therefore, we built the stream–temperature
model with a geostatistical method designed to repre-
sent the spatial configuration, longitudinal connectivity,
and flow volume and direction in stream networks (Peter-
son & Ver Hoef 2010; Ver Hoef & Peterson 2010). These
models are based on moving averages, which permit valid
autocovariances to be generated on the basis of a variety
of hydrologic, or watercourse (Olden et al. 2001; Ganio
et al. 2005), relations. For example, when water flows
from an upstream location to a downstream location, the
locations are considered flow-connected, whereas 2 loca-
tions that are in the same network (i.e., they share a com-

mon outlet somewhere downstream) but do not share
flow are considered flow unconnected. The form of the
equation is similar to a standard linear model,y = Xβ + ε,
where the matrix X explains vector y on the basis of
parameters β. In the standard linear model, random er-
rors are contained in the vector ε. In the geostatistical
network model (Supporting Information), the error term
can be expanded, y = Xβ + z + ε, where z is spatially
autocorrelated random variables (Ver Hoef & Peterson
2010).

We implemented the geostatistical model selection
process in 2 steps. First, we selected the fixed effects
for the final model by comparing candidate model per-
formance with conventional spatial autocovariance mod-
els (on the basis of weight of evidence measured with
Akaike’s information criterion [AIC]) (Buckland et al.
1997; Burnham & Anderson 2002) with a geostatistical
network model. Second, we used root mean square pre-
diction error (RMSPE) to compare spatial autocovariance
models (Ver Hoef & Peterson 2010). In total, we fit 7
geostatistical models in the SSN package (Ver Hoef et al.
2012) in R statistical software (R Development Core Team
2010). We fit spatial autocovariance models to pairwise
watercourse distances and spatial weights that we calcu-
lated with 2 ArcGIS toolsets: functional linkage of water
basins and streams (FLoWS) (Theobald et al. 2006) and
spatial tools for the analysis of river systems (STARS) (Pe-
terson & Ver Hoef 2012). We based the spatial weights
on modeled annual average flow (Jobson 1996). To se-
lect the most accurate spatial autocovariance models, we
generated leave-one-out cross-validation predictions for
each model and calculated RMSPE and the squared Pear-
son correlation (r2) between the observations and the
predictions. The model with the most accurate predic-
tions, represented by the lowest RMSPE, was selected as
the final model.

Future Projections

We used the final model and projected future air tem-
perature (MWMATGCM, where GCM is a general circu-
lation model used to predict future air temperature) to
generate 3 sets of MWMST predictions. We computed
future air temperatures from 3 different GCM estimates.
We used a midrange greenhouse gas emissions scenario
(A1B) (Solomon & Intergovernmental Panel on Climate
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Figure 1. Historical (o) and projected future (GCMs
[general circulation models] A, B, and C) variability of
maximum weekly maximum air temperature
(MWMAT). Boxplots indicate the median, minimum,
maximum, and interquartile range of historical and
future MWMAT (A, low [ECHAM5/MPI-O]; B, medium
[CNRM-CM3]; C, high [UKMO-HadCM3]). The
MWMATGCM appears to vary more frequently than
annually because the hybrid delta method (Hamlet et
al. 2010) extracts the historical pattern of variability
from the period 1915–2006 (i.e., 91 years of
variability over the period 2070–2099).

Change 2007) that predicts a decline in energy produc-
tion from fossil fuels and an asymptotic concentration
(approximately 600 ppm) of atmospheric CO2 by the
year 2100. We chose the following GCMs on the basis of
their forecasting performance in the Pacific Northwest
(Hamlet et al. 2010): ECHAM5/MPI-O, CNRM-CM3, and
UKMO-HadCM3. We also wanted to compare future
MWMST with present conditions. Thus, we calculated
a baseline MWMAT over the full observation period,
MWMATo (average of all MWMAT observations from
1993 to 2009), and used that estimate to predict MWMST
under typical MWMAT conditions (Fig. 1). To calcu-
late MWMATGCM, we used climate projections that were
downscaled in dimensions of space and time (Mote &
Salathe 2010). These data were downscaled from the typ-
ical GCM cell resolution of 1–3◦ (roughly 100–300 km at
±45◦ latitude) to a 1/16th◦ resolution (6 km at ±45◦ lati-
tude) and temporally downscaled from 1 month to daily
temporal resolution with a hybrid delta approach (Hamlet
et al. 2010). For each of the 4 1/16th◦ cells closest to the 4
weather stations in the John Day basin (Supporting Infor-
mation), we calculated a mean value of MWMAT across
all years within the anticipated range of future variabil-
ity. We then averaged the 4 mean values to describe the
MWMAT in the entire basin for an average year expected
for 2070–2099.

For each of the 3 values of MWMATGCM that corre-
sponded to the 3 GCM estimates for 2070–2099, we cal-
culated the loss of habitat for each of the 3 species on the
basis of estimated thermal tolerances. We used a thermal
tolerance of 24.0 ◦C MWMST for Chinook salmon and

rainbow trout (Eaton et al. 1995). This temperature is the
95th percentile for a Gaussian probability density func-
tion that corresponds to the mean, standard deviation,
and sample size of MWMST for the sample set of obser-
vations for the species. We used methods from Eaton et
al. (1995) and a sample set of 237 bull trout observations
corresponding to values of MWMST collected across the
Columbia River Basin (Rieman & Chandler 1999) to es-
timate a thermal tolerance of 14.4 ◦C for bull trout. To
ensure that we did not overestimate thermal habitat loss,
we subtracted the length of intermittent stream (Envi-
ronmental Protection Agency and Horizon Systems 2008;
Oregon Department of Forestry 2011) and unoccupied
habitat that overlapped with the predicted habitat that
was lost due to climate change. Unoccupied habitat was
delineated by excluding streams above physical barriers
(Hein et al. 2011) and referring to existing fish distri-
bution maps (Oregon Department of Fish and Wildlife
2010). We reported these estimates as both length and
volume of stream habitat. We calculated volume by multi-
plying length of habitat by modeled annual average flow
(Jobson 1996) and then dividing by modeled annual av-
erage velocity (Jobson 1996).

Results

Geostatistical Network Model

The network model that was most strongly supported
by the data included log-transformed CRSE and MWMAT,
which were both positively related to MWMST (Table 1):

MWMST = −13.2 + 1.4 ∗ log(CRSE)

+ 0.6 ∗ MWMAT + z + ε, (4)

where z contains spatially autocorrelated random vari-
ables and ε contains random error. Model results and
comparisons are provided in Supporting Information.
Both explanatory variables were statistically significant
(p < 0.001). Of the total variance explained by the model
(r2 = 0.84), the fixed effects (i.e., CRSE and MWMAT)
explained 71% and the spatial autocovariance model ex-
plained 13%. The model that produced the most accurate
predictions on the basis of the lowest RMSPE (1.46 for
the final model) included the linear-with-sill tail-down,
spherical tail-up, and spherical Euclidean autocovariance
models. Of the total variance explained by the spatial au-
tocovariance model, the Euclidean spatial component ex-
plained 5.0%, tail-up explained 2.9%, tail-down explained
2.2%, and the “nugget effect” (autocorrelation present
at zero distance) explained 2.9% (Ver Hoef & Peterson
2010).

The MWMST was coolest (modeled 8.2 ◦C, recorded
9.2 ◦C) in high-elevation tributaries of the John Day
River and warmest (modeled 28.4 ◦C, recorded 28.5
◦C) in the lower reaches of the north and middle forks
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Figure 2. Modeled maximum
weekly (a) historic (1993–2009)
and (b) future (2070–2099)
mean stream temperature
(MWMST) (spatial model, see
Table 1) for an average year on
the basis of maximum weekly
maximum air temperature
(MWMAT) across all observation
years. Predictions are based on
an average of the 3 general
circulation models that
performed well (Hamlet et al.
2010) for the Pacific Northwest.
Prediction sites are in a network
lattice, and sites are spaced at
2 km intervals.

and throughout the lower main stem (Fig. 2a). Between
warm and cool summers, MWMST shifted a maximum of
2.3 ◦C for 1993–2009 at any given location (shift of 3.8 ◦C
MWMAT). The warmest class of modeled stream temper-
ature (>24 ◦C MWMST) (Fig. 2a) was in stream reaches
above the thermal tolerance for rainbow trout and Chi-
nook salmon for an average year between 1993 and
2009.

Projecting Climate-Driven Changes in Thermal Habitat

The MWMATGCM increased by an estimated 5.0 ◦C (on
the basis of a 3-GCM ensemble average) by 2070–2099.
The geostatistical network model predicted this change
in air temperature would result in a change in stream
temperature of 3.0 ◦C MWMST (Fig. 2b). The main-stem
reaches of the John Day River lost the most thermal habi-
tat because their thermal gradients were gradual (i.e.,
small changes in stream temperature can cause dramatic
losses of thermal habitat as shown by the shift of the
warmest MWMST class along the main stem and north
and middle forks in Fig. 2). By comparison, headwater
reaches were projected to lose less thermal habitat (i.e.,
MWMST analogues were closer in headwater streams).

The length of thermal habitat for rainbow trout was
estimated to decline the most (332–1430 km) for anadro-
mous rainbow trout. Resident rainbow trout habitat was
more extensive, but results specific to these fish are not
reported here. The length of thermal habitat for bull trout
was estimated to decline the least (102–154 km). How-
ever, as a percentage of the length of current thermal
habitat, rainbow trout habitat was estimated to decline
the least (10–43%) compared with bull trout (66–100%)
because the present-day range of bull trout is restricted.
A similar pattern resulted from calculating change in the
volume of thermal habitat. However, the percent loss of
thermal habitat by volume for all GCMs and salmonid
species was markedly higher than the percent loss of
thermal habitat by length. Thus, the proportion of pre-

dicted habitat loss in high-volume reaches was greater
than low-volume headwater reaches.

The volume of thermal habitat in upstream reaches
was small compared with that which would be lost due
to unsuitable temperatures in high-volume downstream
reaches (Fig. 3). Calculations of relative volume lost were
34%, 50%, and 7% higher than calculations of length lost
for Chinook salmon, rainbow trout, and bull trout, re-
spectively (Fig. 4). This pattern was more apparent when
we disaggregated projected habitat losses into main-stem
and tributary reaches (Fig. 4). On the upper main stem,
the loss of habitat by volume for rainbow trout increased
by a factor of 0.5 relative to the loss of habitat by length
and increased by a factor of 4.0 in tributaries (Table 2).
Results for north fork rainbow trout were similarly sensi-
tive to unit of measure; loss of thermal habitat increased
by a factor of 0.6 in main-stem reaches and by 2.4 in
tributaries (Table 2).

Discussion

Climate change will likely have large negative effects on
cold-water fish species in many parts of the world (Poff
et al. 2002; Heino et al. 2009). Our stream-temperature
model projected losses of thermal habitat from 10% to
100%, depending on the species, climate change pro-
jection, and unit of measure. Eaton and Scheller (1996)
used the same thermal-tolerance measure we used and a
climate change scenario in which atmospheric CO2 con-
centrations double, and estimated that thermal habitat
declined approximately 50% for cool and cold-water fish
species across the conterminous United States. Steen et
al. (2010) modeled land-use and climate change effects
on fish assemblages in the Muskegon River, Michigan
(U.S.A.), and estimated large range expansions of warm-
water species (up to 276%) and large range contractions
of cold-water species (likely extirpation of brook trout
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Figure 3. Projected loss of
thermal habitat in the John Day
River network by 2070–2099
under the A1B greenhouse gas
emissions scenario by general
circulation model
(ECHAM5/MPI-O, CNRM-CM3,
and UKMO-HadCM3) and
species. Length of habitat loss
(top number set) is reported in
kilometers and volume of habitat
loss (bottom number set) is in
millions of cubic meters.

and 80% decline in rainbow trout) over the next century.
Similarly, Battin et al. (2007) linked climate, land use, and
population models for the salmon in the Snohomish River
basin, Washington, and predicted up to 91% of salmon
returns falling below a low-abundance threshold (identi-

fied by the Snohomish River Basin Salmon Conservation
Plan) by 2050.

Results of previous research on losses of salmonid habi-
tat due to present-day warming are consistent with our
results. For example, catch rates for brown trout (Salmo

Figure 4. Percent historical
thermal habitat projected to be
lost for 3 species by length (L) and
volume (V) within main-stem
reaches (MS), tributaries (TRB),
and MS and TRB combined (ALL)
throughout the John Day basin
for an average year (on the basis
of maximum weekly maximum
air temperature across all years
between 2070 and 2099). The
general circulation models
(GCM) on which the estimates
are based are an average of the 3
GCMs in this study
(ECHAM5/MPI-O, CNRM-CM3,
and UKMO-HadCM3).
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Table 2. Percent loss of thermal habitat in the John Day River by species, channel size, subbasin, and unit of measure (i.e., length and volume)
projected by 2100 (an average year during the period 2070–2099).

Subbasinb

Lower main stem Middle fork North fork South fork Upper main stem

Channel % loss % loss % loss % loss % loss % loss % loss % loss % loss % loss
Species sizea (length) (volume) (length) (volume) (length) (volume) (length) (volume) (length) (volume)

Chinook salmon
MS – – 90 97 60 88 100 100 67 92
TRB – – 13 24 44 62 – – 5 8
ALL – – 45 88 50 78 100 100 47 86

Rainbow trout
MS – – 91 97 56 87 100 100 63 92
TRB 26 57 13 41 14 48 7 33 7 34
ALL 26 57 22 76 17 65 26 88 13 72

Bull trout
MS – – – – 80 96 – – 88 98
TRB – – 100 100 100 100 – – 80 93
ALL – – 100 100 97 99 – – 82 95

aAbbreviations: MS, main stem; TRB, tributary; ALL, aggregated.
bProjections are based on averaged temperature projections from 3 general circulation models run for a midrange greenhouse gas emissions
scenario. When no data exist (e.g., most of the lower main stem for most species), no thermal habitat exists during the summer.

trutta) decreased by 67% from 1978 to 2002 in low-
elevation streams in the Swiss Alps due to an increase
in the incidence of temperature-dependent proliferative
kidney disease (Hari et al. 2006). In a Welsh river, abun-
dances of brown trout and Atlantic salmon (Salmo salar)
declined by 50% and 67%, respectively, between 1985
and 2004, and the decline was likely due to hotter, drier
summers (Clews et al. 2010). The authors of these studies
did not account for spatial autocorrelation in stream net-
works. Isaak et al. (2010) used a network geostatistical
model to predict present-day rates of warming of sum-
mer stream temperatures in the Boise River basin, Idaho
(U.S.A.), which is hydrologically similar to the north and
middle forks of the John Day River. On the basis of
increases in stream temperature resulting from climate
change and fire, they found an 11–22% loss of habitat
length for bull trout from 1993 to 2006 (rainbow trout
estimates ranged from 6% gain to 2% loss).

We acknowledge our model’s potential limitations.
The thermal tolerances we used described approximately
the spatially extensive occurrences of each species, and
there are potential incongruences between the scale at
which thermal tolerances were derived and the scale
at which stream temperatures were measured and mod-
eled. Thermal tolerances for rainbow trout and Chinook
salmon were derived from a national database, and the
thermal tolerance for bull trout was derived from records
from the Columbia River basin. Thus, each species may
be more or less sensitive to finer resolution variation of
thermal habitat (e.g., cold-water upwelling, thermal strat-
ification in deep pools) than could be incorporated into
our model. Finer resolution information on thermal toler-
ances could be obtained by applying confidence intervals
reported in Eaton et al. (1995), comparing range esti-

mates to spatially continuous observations of fish (Torg-
ersen et al. 2006), and investigating the role of thermal
refugia in habitat selection (Torgersen et al. 1999).

Rainbow trout and Chinook salmon are expected to
be substantially affected by increasing temperatures, but
not to the same degree as bull trout, which require colder
temperatures (Rieman & Chandler 1999). Although our
results show the likely persistence of rainbow trout and
Chinook salmon, their habitat will likely be greatly re-
duced within the John Day basin. Conservation and
restoration-based management, including stream and ri-
parian restoration, may help minimize the loss of thermal
habitat for salmonids in the John Day River. For instance,
throughout the Pacific Northwest, the loss of riparian
vegetation is linked to elevated water temperatures (e.g.,
Li et al. 1994; Chen et al. 1998), and efforts to reestablish
riparian vegetation for salmon continue (e.g., Kauffman
et al. 1997; Beechie & Bolton 1999). Such efforts include
the reduction of cattle grazing in riparian areas in an effort
to allow woody riparian vegetation to recover, thereby
providing shade that reduces stream temperature. Addi-
tionally, salmonid survival increases with increased chan-
nel complexity (Quinn & Peterson 1996); thus, increas-
ing complexity in future habitat and upstream refugia
could reduce species’ stress. The most effective and cost-
effective management actions rely on highly precise mod-
els and the most robust climate forecasts available. Our
use of a highly accurate model of stream temperature
provides data and methods for assessing the relative sen-
sitivity of different parts of a basin to climate-induced
warming, the relative vulnerability of different species
within the basin, and information on where management
efforts may be most effective for protecting salmonids in
the future.
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