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E x e c u t i v e S u m m a r y 

The distribution and availability of nutritional resources strongly influence elk movements 
and behaviors and are particularly important for female elk (Cervus canadensis) to meet 
nutritional requirements of lactation, mass gain, and pregnancy. Recent studies of elk 
resource selection during the summer have demonstrated that elk select strongly for areas 
associated with high values of the Normalized Difference Vegetation Index (NDVI), a 
remotely-sensed indicator of net primary productivity of canopy that has been used 
extensively as a surrogate for nutritional resources in a variety of species. In particular, two 
NDVI metrics that integrate phenological changes of vegetation into an annual measure of 
production, NDVI amplitude (AMP) and time-integrated NDVI (TIN), have been found to be 
important for elk selection in Montana. The studies that elucidated these relationships 
recommended that managers incorporate nutrition into elk habitat management plans; 
however, considerable uncertainty and lack of information exists regarding the 
relationship between the NDVI metrics and nutritional resources for elk. This study aims to 
fill these knowledge gaps and provide recommendations for the management of elk habitat 
in western Montana. We evaluated 3 relationships: 1) NDVI and nutritional resources 
across the landscape, 2) NDVI and female elk nutritional condition, and 3) NDVI and 
landscape disturbances. 

We used extensive ground-sampled vegetation data and elk nutritional condition 
measurements from 2 study areas and 4 elk populations: the Elkhorn Mountains 
comprising the Elkhorn population and the Bitterroot Valley comprising the West Fork, 
East Fork, and North Sapphire populations. Both study areas generally consist of lower-
elevation grass- and shrub-dominated foothills adjacent to privately-owned residential and 
agricultural lands and higher-elevation dry coniferous forests. The Bitterroot Valley 
additionally supports extensive valley bottom riparian areas and higher-elevation mesic 
mixed conifer forests. From 510 vegetation plots sampled during peak growing season 
2012-2017, we estimated elk forage abundance and quality. We determined best-
supported models predicting forage abundance and quality from the NDVI metrics and 
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landscape attributes. From 172 nutritional condition measurements of individual elk 
sampled during fall and winter 2011-2015, we estimated ingesta-free body fat and 
pregnancy status. We determined best-supported models predicting body fat and 
pregnancy from individual elk exposure to NDVI metrics on their summer-fall ranges. We 
additionally obtained U.S. Forest Service disturbance data on wildfire, prescribed fire, and 
timber harvest for the study areas to examine the correlation between NDVI values and 
landscape disturbances. We determined best-supported models predicting the NDVI 
metrics from disturbance type, the amount of time since the disturbance, and forest 
vegetation type. 

We found evidence for associations of AMP with forage quality and forage abundance and 
of TIN with forage abundance, fall and winter body fat, and landscape disturbances. We 
found TIN to be more consistently supported across our analyses than AMP, suggesting 
that TIN may be a more biologically relevant metric. Although the NDVI metrics were 
positively or optimally related to nutritional resources, the associations were weak, 
suggesting that NDVI does explain some variance but is insufficient to fully characterize 
summer forage for elk. We did find a strong positive relationship between levels of TIN 
experienced by elk on their summer ranges and body fat levels during the fall. We also 
found a weaker positive relationship between TIN that elk experience on their summer 
range and body fat levels during the winter. Elk selection of TIN during the summer may 
therefore be beneficial to the nutritional status of elk following the growing season. We did 
not find a significant relationship between elk exposure to NDVI and pregnancy status. 
Lastly, our results indicated that TIN is correlated with several landscape disturbances. TIN 
was significantly reduced in areas burned by wildfires all years post-disturbance, burned 
by prescribed fires ≤ 5 years post-disturbance, and clearcut 6-10 years post-disturbance. 
Areas treated by thinning (≥ 11 years post-disturbance) and clearcutting (≥ 21 years post-
disturbance) significantly increased TIN. We additionally found some evidence that TIN 
increased within 10 years in areas treated by thinning and combination thinning-
prescribed burning and after 10 years in areas treated by prescribed burning alone. Within 
10 years after disturbance, the greatest increase in TIN occurred in areas treated by 
thinning (3.3-5.9% increase) and combination thinning-prescribed burning (1.4-4.7%), 
however, these relationships were weak. Between 11-20 years after disturbance, the 
greatest increase in TIN occurred in areas treated by thinning (5.5% increase) and 
prescribed burning (3.9%), but only the relationship with the thinning treatment was 
significant. After 21 years, the greatest increase in TIN occurred in areas treated by 
prescribed burning (10.1% increase), thinning (7.5%), and clearcutting (6.7%), but the 
relationship with prescribed burning was weak. 

Together these results indicate that managing areas for greater levels of TIN may increase 
the availability of summer nutritional resources and improve the ability of elk to gain body 
fat. Forage abundance may be enhanced through forest treatments designed to increase 
TIN. While we found uncertainty in the short term relationships between TIN and 
disturbance, forest treatments that include thinning or combination thinning-prescribed 
burning may improve TIN within 10 years of disturbance. In the long term (> 10 years), 
forest treatments that improve TIN may include thinning or prescribed burning. 
Reductions in TIN across all years post-wildfire disturbance may be due to higher severity 
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fires constraining plant revegetation and the limited spatial scale at which minimal plant 
growth can be detected by satellite sensors. Forage abundance and forage quality may also 
be enhanced through timber harvest treatments that reduce overstory canopy cover. We 
suggest that focusing management treatments on public lands and in forest vegetation 
types that are common within a region but with lower nutritional value may be one tool 
available to attract more elk onto public lands during the summer and reducing the 
redistribution of elk to private lands prior to and during the fall hunting seasons. Managers 
could also consider forest treatments in areas identified as important seasonal travel 
corridors for elk. Combining forest treatments with other strategies, such as reducing 
availability of high quality nutritional resources on private lands to elk, increasing hunter 
access on private lands, or altering harvest regulations to more evenly distribute harvest 
risk across public and private lands, may provide a more holistic approach to encouraging 
elk to remain on public lands. 
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S e c t i o n 1 - B a c k g r o u n d 

During 2011-2014, biologists from the United States Forest Service (USFS) and Montana 
Fish, Wildlife and Parks (MFWP) partnered to develop a set of recommendations for elk 
habitat management on the Custer, Gallatin, Helena, and Lewis and Clark National Forests. 
The purpose of these recommendations were to describe the habitat needs for maintaining 
elk on public lands throughout the year and the habitat management guidelines for USFS 
lands appropriate to meet this goal. The document identified knowledge gaps and 
uncertainties in our collective understanding of elk and elk habitat management. Building 
from that work, during 2015-2016, Montana State University, USFS, and MFWP conducted 
a regional elk habitat selection modeling effort and provided detailed information 
regarding the influence of various factors such as nutrition and travel management on elk 
summer and fall habitat selection and distributions (Ranglack et al. 2016, 2017). 

A key result of the habitat selection analyses was that nutritional resources, as indexed by 
NDVI metrics, are the primary factor affecting summer-fall elk distributions and maintain 
importance in determining elk distributions during the fall archery hunting season 
(Ranglack et al. 2016, 2017). In a subsequent study evaluating tradeoffs of risk and forage 
during the fall archery season in Montana, elk selection for nutritional resources, as 
estimated from measuring vegetation, increased during the archery season (DeVoe et al. in 
review). These results highlight the importance of nutrition in influencing elk distributions 
and the need to incorporate nutritional resource considerations in elk habitat management, 
particularly if habitat management is being used as a tool for maintaining a distribution of 
elk that includes elk using public lands during the fall season. The importance of summer 
nutritional resources on ungulate population dynamics is well documented (Cook et al. 
2013, Monteith et al. 2014). In southwest Montana, most studies indicate that nutrition is 
not commonly limiting elk pregnancy rate or overwinter survival (Cook et al. 2004b, Evans 
et al. 2006, White et al. 2011, MFWP unpublished data), however some populations do 
experience nutritional limitations that limit elk pregnancy rates (Proffitt et al. 2016a). 
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The habitat selection study completed by Ranglack et al. (2016, 2017) resulted in a 
recommendation that managers incorporate nutrition into elk habitat management 
strategies as part of the effort to accommodate elk habitat requirements and maintain a 
distribution of elk across public and private lands during the fall hunting seasons. Although 
these studies suggest that NDVI amplitude and time integrated NDVI may be useful indices 
of ungulate nutritional resources, additional information is required to clarify the 
relationship between NDVI, vegetation communities, and ungulate nutritional resources, as 
well as the consequences of variability in nutritional resources on elk vital rates. NDVI is a 
metric of greenness based on satellite imagery and has become one of the most widely used 
vegetation indices in ecology (Pettorelli et al. 2005). Ranglack et al. (2016, 2017) showed 
that elk selected for areas that have the highest NDVI during the summer growing season, 
but did not provide insights for managers regarding the relationships between NDVI and 
vegetation communities or how to manage vegetation in order to increase elk nutritional 
resources in a way that matters for elk population dynamics. Particularly for forested 
landscapes that experience disturbances, such as wildfire, timber harvest, or insect-
damage, understanding how NDVI relates to elk nutritional resources can help resources 
agencies to develop and improve elk habitat management standards. 

This project was initiated to provide specific recommendations for vegetation management 
to benefit elk and that may help maintain a distribution of elk on public lands during the 
fall hunting season. The objectives of the project were to: 1) evaluate the relationship 
between ground-based vegetation data and NDVI; 2) evaluate the effect of NDVI on elk 
nutritional condition, including body condition and pregnancy rate; and 3) evaluate the 
effect of variable forest disturbances and time since disturbance on NDVI. 
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S e c t i o n 2 - S t u d y A r e a s 

Figure 1 – The North Sapphire, West Fork, East Fork, and Elkhorn elk population annual ranges in 
west-central Montana, USA, 2012-2017. 

We conducted the study in west-central Montana, USA within the annual ranges of 4 elk 
populations: 1 population in the Elkhorn Mountains and 3 populations in the Bitterroot 
Valley: the North Sapphire, East Fork, and West Fork (Fig. 1). The Elkhorn Mountains 
(1,120-2,866 m elevation) are a relatively isolated mountain chain with lower elevations 
dominated by open sage-grassland (e.g., big sagebrush [Artemisia tridentata], bluebunch 
wheatgrass [Pseudoroegnaria spicata], Idaho fescue [Festuca idahoensis], rough fescue 
[Festuca scabrella], bluegrasses [Poa spp.]) and upper elevations dominated by dry 
coniferous forests (e.g. lodgepole pine [Pinus contorta], Douglas fir [Pseudotsuga menziesii], 
ponderosa pine [Pinus ponderosa]) with small interspersed meadows. Cultivated crops 
(pasture grasses and leguminous forbs) border the northern and southwestern portions of 
the range. The climate is characterized by short, cool summers (17.8°C mean July 
temperature) and long, cold winters (-4.7°C mean January temperature), with mean annual 
precipitation ranging 269-811 mm (PRISM Climate Group 2016). The Elkhorn population 
annual range (3,787 km2) included a mix of private lands and public lands that were 
primarily managed by the Helena and Beaverhead-Deerlodge National Forests, Bureau of 
Land Management, and state of Montana. Elk are counted annually from a fixed-wing 
aircraft. The long-term population average (1994-2014) is 1,861 elk, with a peak in 1996 of 
2,893 elk. The current population is estimated at 2,100 animals. Elk are sympatric with 
moose (Alces alces), mule deer (Odocoileus hemionus), white-tailed deer (O. virginianus), 
and a small population of bighorn sheep (Ovis canadensis). Resident carnivores included 
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mountain lion (Puma concolor), bobcat (Lynx rufus), coyote (C. latrans), and American black 
bear (Ursus americanus). 

The Bitterroot Valley (950-3,300 m elevation) gradates from flat bottomland and gentle 
foothills to steep slopes of the surrounding Sapphire and Bitterroot Mountains. Lower 
elevations support similar vegetation communities to the Elkhorn Mountains, however, 
higher elevations are primarily mesic mixed coniferous forests of lodgepole pine (Pinus 
contorta), grand fir (Abies grandis), and subalpine fir (Abies lasiocarpa). Cultivated crops 
(pasture grasses, corn, and leguminous forbs) can also be found at lower elevations and 
primarily in the northern portion of the valley. The climate is characterized by more 
moderate temperatures (-4.4°C mean January and 17.1°C mean July temperatures) and 
higher mean annual precipitation (ranging 284-963 mm) compared to the Elkhorn 
Mountains (PRISM Climate Group 2016). Sympatric species were similar to the Elkhorn 
Mountains and additionally included gray wolf (Canis lupus). 

The 3 elk ranges in the Bitterroot Valley included varying proportions of private and public 
lands. The Sapphire range (2,482 km2) was comprised of nearly equal portions of private 
lands and public lands managed by the Bitterroot and Lolo National Forests and the state of 
Montana. The East Fork (3,971 km2) and West Fork (1,990 km2) ranges were comprised 
primarily (~78-97%) of public lands managed by the Bitterroot, Beaverhead-Deerlodge, 
and Salmon-Challis National Forests, and the state of Montana. From the mid-2000s to the 
mid-2010s, the North Sapphire population steadily increased from 750 to 1,051 elk due to 
a combination of moderate calf recruitment and limited female harvest. During this same 
time, the East Fork and West Fork populations declined from 4,135 to 3,332 elk and 1,900 
to 722 elk, respectively, due to a combination of antlerless elk harvest and increasing 
predation pressure (Eacker et al. 2016). 

Timber harvest, wildfire, and insect-caused damage have resulted in heterogeneous forests 
of varying successional stages across the study areas. Timber harvest peaked in the 1980s 
on the Bitterroot, Lolo, and Helena National Forests, averaging 32.5, 67.4, and 20.8 million 
board feet cut per year, respectively, but had declined 69-76% across all forests by the 
2000s (U.S. Forest Service 2016). In contrast, wildfire activity and insect-caused damage 
have more recently become widespread disturbances throughout the study areas. In the 
Bitterroot Valley, the annual area burned increased from an average of 16 km2 during 
1950-1999 to 159 km2 during 2000-2015. Forest damage caused by insects, primarily the 
mountain pine beetle (Dendroctonus ponderosae), peaked in 2009 in the Elkhorn 
Mountains and 2012 in the Bitterroot Valley, affecting approximately 746 and 920 km2 of 
coniferous forest within the elk annual ranges, respectively. 
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S e c t i o n 3 - N D V I & E l k N u t r i t i o n a l R e s o u r c e s 

Introduction 

The distribution and availability of nutritional resources are important driving 
mechanisms of ungulate resource selection and migration (Fryxell et al. 1988, Sawyer and 
Kauffman 2011, Bischof et al. 2012, Merkle et al. 2016) and strongly influence ungulate 
survival and reproduction (Cook et al. 2004a, 2013, 2016, Monteith et al. 2014, Proffitt et 
al. 2016a). For ungulates living at northern latitudes with strong seasonality, summer and 
autumn (henceforth, summer-fall) nutritional resources allow individuals to replenish 
winter-depleted body fat reserves and accrue sufficient fat to survive the nutrient-limited 
winter months (Cook et al. 2004a). Summer-fall nutrition is particularly important for 
supporting the energetic demands of female lactation and pregnancy and for increasing 
winter survival of calves which can have important implications to population 
performance. In elk (Cervus canadensis), females with higher body fat at the end of summer 
are more likely to become pregnant in the fall, and calves exposed to higher nutrition 
during the summer-fall exhibit faster growth rates and higher winter survival (Cook et al. 
1996, 2004a). In western North America, the effects of limited summer-fall nutritional 
resources to free-ranging elk have been correlated to reduced population performance 
(Cook et al. 2013, Proffitt et al. 2016a). 

Ranglack et al. (2017) highlighted the important influence of summer-fall nutrition on elk 
distributions and the need to incorporate elk forage considerations in elk habitat 
management plans. An understanding of the distribution and availability of summer-fall 
forage for elk may be a useful tool for resource managers to maintain distributions of elk 
on public lands during the fall hunting seasons, a current challenge across many western 
states (Burcham et al. 1999, Conner et al. 2001, Haggerty and Travis 2006, Proffitt et al. 
2010, 2013, 2016b). This understanding may also provide managers with insight into the 
potential nutritional condition, productivity, and, ultimately, the performance of elk 
populations. 
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Characterizing the distribution and availability of nutritional resources for elk provides 
resource managers with valuable information to manage elk distributions and populations 
but remains a challenge even on small landscapes. Accurate measurements to capture the 
heterogeneous spatial and temporal distribution of forage requires extensive annual 
ground-sampling of vegetation across broad areas and habitat types, an option that is 
largely not feasible for managers. The satellite-derived Normalized Difference Vegetation 
Index (NDVI) may provide a simple and efficient alternative to ground-sampling (Pettorelli 
et al. 2011). NDVI, the ratio of red and near-infrared radiation absorbed and/or reflected 
by vegetation, is directly related to vegetation productivity and photosynthetic activity in a 
defined area (Pettorelli et al. 2005). In studies of ungulates, NDVI has often been used as a 
proxy for nutritional resources representing forage quantity or quality (Pettorelli et al. 
2006, Ryan et al. 2006, Wiegand et al. 2008, Bischof et al. 2012, DeVoe et al. 2015, Merkle et 
al. 2016, Rivrud et al. 2016, Lowrey et al. 2017, Mysterud et al. 2017, e.g., Aikens et al. 2017, 
Marshal et al. n.d.). Recent studies of elk in western Montana found that elk selected for 
areas with higher NDVI values during the summer and fall (Ranglack et al. 2016, 2017), in 
addition to other seasons (Proffitt et al. 2011), indicating that NDVI may be a relevant 
indicator of nutritional resources. 

Several studies have evaluated the validity of using NDVI to represent nutritional resources 
for ungulates and have found correlations of NDVI with measurements of fecal crude 
protein (Hamel et al. 2009, Ryan et al. 2012) and ground vegetation biomass, digestibility, 
and crude protein (Borowik et al. 2013, Garroutte et al. 2016). Studies focusing on 
nutritional resources for elk in particular are limited, however. Garroutte et al. (2016) 
assessed the relationship of NDVI and ground-based vegetation measurements of 
vegetation abundance and quality within elk summer migratory ranges. However, this 
study focused only on grassland and irrigated agricultural areas, which represent small 
portions of landscapes occupied by elk during the summer-fall and administered by public 
land resource managers. 

In the present study, our objective was twofold: 1) use extensive ground-based vegetation 
measurements across a landscape of diverse vegetation cover types and within the annual 
ranges of 4 elk populations to evaluate the relationship between NDVI metrics and 
summer-fall nutritional resources that are important for elk (i.e., forage quality and 
abundance), and 2) provide resource managers in western Montana with insight for using 
NDVI to represent the availability and distribution of nutritional resources for elk across 
large landscapes. We expected that NDVI metrics would be correlated with forage 
abundance given the correlation of NDVI with above-ground productivity of vegetation in 
other studies (Pettorelli et al. 2005, 2011, Borowik et al. 2013, Garroutte et al. 2016). NDVI 
metrics may also or alternatively be related to forage quality, a relationship that has not yet 
been investigated. 

Methods 

Nutritional resources 

We collected 2 measures of elk nutritional resources estimated from ground-based 
vegetation sampling: forage abundance (g of forage species biomass per m2) and forage 
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quality (kcal of digestible energy per g of forage species). The availability of data to 
estimate each measure varied by study area due to different ground-sampling objectives 
across studies. Forage abundance data were collected at all study areas, while forage 
quality data were only collected within the Bitterroot Valley. Sampling methodology was 
standardized across study areas. Vegetation cover type, species composition, percent cover, 
and biomass were recorded at all sampling sites. In estimates of forage abundance and 
forage quality, we screened these data to only include elk summer forage species 
(identified from elk fecal samples). In estimates of forage quality, we accounted for the 
nutritional availability of species in different phenological stages by collecting samples of 
forage species in several phenological stages and analyzing for the digestibility of the 
samples (Appendix A). 

We sampled vegetation during peak growing season (7 July-31 August) at random sites 
proportionally allocated within vegetation cover types for each population annual range 
(Krebs 1989). We sampled sites (n = 1,023) within the East Fork and West Fork ranges 
during 2012-2013 (Proffitt et al. 2016a), the North Sapphire range during 2014-2015 
(Proffitt et al. 2017), and the Elkhorn range during 2016-2017. To focus our analysis on 
areas and habitats managed by the U.S. Forest Service, we constrained the data to the 
spatial extent and vegetation cover types of the Region 1 Vegetation Mapping Program 
(VMap) database (see Landscape covariates section). We therefore excluded sites occurring 
off U.S. Forest Service lands (n = 110; 10.7% of the sites) and excluded sites occurring in 
disturbed or transitional (i.e., burned < 15 years prior or insect-infested < 10 years prior) 
areas (n = 371; 36.3% of the sites). At each sampling site, we placed a 40 m transect along 
the contour of the slope. We recorded species composition and percent cover of forb, 
shrub, graminoid, and tree (< 2 m tall) lifeforms at five 1 m2 quadrats placed every 10 m 
along the transect. We estimated cover of lifeforms independently, allowing total cover per 
quadrat to exceed 100%. Within the 0, 20, and 40 m quadrats, we established a nested 0.25 
m2 clip plot and collected all graminoid and forb biomass >1 cm above ground. On shrubs, 
we clipped all leaves and non-woody stems (however, see changes to sampling methods 
below). We dried samples at 50°C in a drying oven for 48 hours and measured dry weight 
to the nearest gram. In 2012-2013 and 2016-2017, we apportioned the dry weight to plant 
lifeform (e.g., forb, graminoid, and shrub) based on the percent cover of each lifeform. In 
2014-2015, we made 2 minor changes to sampling. First, because clipping shrubs was 
time-intensive and shrubs comprised only a small percentage of the diet, we did not clip 
shrub biomass but instead estimated shrub biomass from shrub basal diameters. Second, 
we measured the weight of forbs and graminoids separately to more precisely estimate 
biomass by lifeform. 

To identify the forage species that are important for elk, we collected 12-21 pellet samples 
within each elk population summer-fall range over 2 summer-fall seasons (May-
September). Each composite pellet sample included 10-20 individual pellets randomly 
selected from 10 pellet groups within a 2-5 ha area. We collected only moist samples to 
ensure pellets were fresh and from the season of interest. We estimated diet composition 
using Level B fecal plant fragment analyses (Wildlife Habitat and Nutrition Laboratory, 
Pullman, WA, USA) and identified elk forage species for each elk population as the set of 
species that constituted 95% of the total diet. We combined the top forage species for the 3 
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elk populations in the Bitterroot Valley due to their close proximity and identified the 
Elkhorn forage species separately. 

To estimate forage abundance at each sampling site, we first apportioned clipped, dry 
biomass (g per 0.25 m2) for each lifeform to each species based on rescaled percent cover 
(species cover proportional to cover within the appropriate lifeform). Second, we filtered 
out forage species and summed biomass across lifeform. Finally, we averaged biomass per 
lifeform across clip plots, scaled up to square meters (0.25 m2 x 4 = 1 m2), and summed 
graminoid and forb biomass. We did not include shrub biomass in the estimate of forage 
abundance because modeled estimates of shrub biomass were considered to be imprecise 
and because shrubs comprised only a small portion of the elk diets. 

To estimate forage quality at each sampling site in the Bitterroot Valley, we first estimated 
the proportion of each forage species in each phenological stage (see Appendix A for 
details). Second, we estimated the digestible energy (kcal/g) of each forage species in each 
phenological stage. Finally, we estimated forage quality as the weighted mean of values of 
digestible energy, where the proportion of each species in each phenological stage was 
used to weight the estimate. 

NDVI metrics 

We used NDVI metrics developed from 30-m resolution Landsat satellite products. We 
chose to use the Landsat NDVI data because the higher spatial resolution better matches 
the scale at which ground-vegetation was collected and better represents understory 
forage where canopy cover was greater, as compared to other NDVI sources. We first 
obtained pre-processed and smoothed 16-day composite images of NDVI from the dynamic 
web application (https://ndvi.ntsg.umt.edu/) developed by Robinson et al. (2017). For the 
years 2012-2017 corresponding to the ground-based vegetation sampling, we downloaded 
images with Landsat 7 ETM+ SLC-off and climatology gap-filling of 10 years. We calculated 
2 annual-summarized NDVI metrics related to vegetation productivity and phenology 
during the growing season: time integrated NDVI (TIN) and NDVI amplitude (AMP; 
Pettorelli et al. 2005, 2006). We calculated TIN as the accumulation of NDVI values for each 
pixel between the beginning of the growing season, April 14 (the mean growing season 
identified for the North Sapphire elk population in Ranglack et al. 2016), and the end of the 
ground-sampling period, August 31, to index net primary production. This included 
Landsat images from Julian days 113 to 241. We calculated AMP as the increase in NDVI 
during this period (i.e., the difference between the maximum NDVI during the growing 
season and the NDVI at the start of the growing season). These annual NDVI metrics have 
been found to be important in resource selection studies of elk in Montana (Ranglack et al. 
2016, 2017). 

Landscape covariates 

In addition to the NDVI metrics and to account for attributes of the landscape that may 
influence vegetation productivity and quality, we obtained the following covariates for 
inclusion in the analysis of forage quality and abundance (Table 1): vegetation cover type, 
canopy cover (CC), precipitation, elevation (ELEV), slope (SLP), solar radiation index (SRI), 
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and 2 indices of site moisture potential: compound topography index (CTI) and 
precipitation-, heat load-, and elevation-adjusted topographic index (PHEAT). 

Table 1 - NDVI and landscape covariates, functional forms (L = linear, Q = quadratic, PS = 
pseudothreshold), and hypothesized directions of relationships considered in models of elk forage in 
west-central Montana, USA, 2012-2017. Refer to text for covariate descriptions. *PHEAT = 
Precipitation-, Heat Load-, and Elevation-adjusted Topographic index. 

We obtained vegetation cover types from the Region 1 Vegetation Mapping Program 
(VMap) databases maintained and used extensively by the Northern Region of the U.S. 
Forest Service (Barber et al. 2011). To classify vegetation cover types, we used the 
dominance 60% plurality classifications that included grass (dry and wet), shrub (xeric and 
mesic), and tree (species-specific or heterogeneous mixed species) lifeforms (Table 2). For 
tree lifeforms, the dominance 60% plurality classification represents the species 
comprising ≥ 60% of the abundance present within vegetation polygons or a 
heterogeneous mix of shade-tolerant or -intolerant species where no single species makes 
up ≥ 60% of the abundance present within vegetation polygons. 
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Table 2 - Descriptions of vegetation cover types as defined by dominance 60% plurality classifications 
from the U.S. Forest Service Region 1 Vegetation Mapping Program (VMap) databases (Barber et al. 
2011). 

We obtained 30-m elevation data from The National Map (https://nationalmap.gov/) and 
calculated SLP, SRI (Fu and Rich 1999), and CTI variables. We obtained 30-m forest canopy 
cover data from Landfire (<https://www.landfire.gov/) to account for the influence of 
canopy cover on vegetation productivity. We also expected that the effect of the NDVI 
metrics on forage abundance and quality would depend on the effect of canopy cover (e.g., 
where canopy cover is lower, the effect of the NDVI metrics will be stronger). To account 
for annual variations in growing season conditions during the 6 years of vegetation 
sampling, we calculated 2 precipitation metrics for each year of sampling from 4-km PRISM 
data (PRISM Climate Group 2016). We calculated winter-spring precipitation (WSp) by 
accumulating precipitation from December 1 to May 31 to characterize the moisture 
available leading into the growing season. We calculated winter-spring-summer 
precipitation (WSSp) by accumulating precipitation from December 1 to the date of 
sampling to characterize the moisture available throughout the growing season. 

The PHEAT variable is a 10-m resolution index of site moisture potential developed to 
characterize the biophysical properties of the landscape (S. Brown, U.S. Forest Service, 
unpublished data). PHEAT estimates the relative availability of moisture at a given site 
based on the integration of fine-scale, 30-year average precipitation, elevation-adjusted 
heat load (annual insolation), and the compound topographic index. Starting with a given 
amount of precipitation, moisture becomes either more or less available based on the 
topography downhill (i.e., a moisture shedding or collecting area) and by the evaporative 
demand as modeled by the radiative heat load (watts/m2) impacting the site. The radiative 
heat load model is adjusted by elevation to attenuate the evaporative demand due to the 
altitude-related temperature that would be experienced at those sites (e.g., the evaporative 
demand at a low elevation southern exposure site would be greater than at a high elevation 
southern exposure site). The combined output is a unit-less index of site moisture 
potential, with values ranging from low to high representing low to high moisture 
potential. 
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Analysis 

To develop models that predict forage abundance and forage quality from NDVI metrics, we 
extracted the values of the NDVI metrics and landscape covariates to each sampling site 
that corresponded to the year of ground-sampling. We standardized all continuous 
covariates and excluded covariate pairs with Pearson correlation coefficients of |r| > 0.6 
from consideration in the same model to avoid collinearity problems (Appendix B). 
Additionally, to allow flexibility in the relationships between nutritional resources and 
covariates, we evaluated linear, quadratic, and pseudothreshold (natural log transform; 
after Franklin et al. 2000) forms for each continuous covariate in an exploratory 
framework unless the most appropriate functional form could be identified a priori from 
existing literature (Table 1). For the NDVI metrics, we expected a positive association with 
forage abundance and therefore considered only linear and pseudothreshold functional 
forms of each NDVI metric in forage abundance models. We expected a positive association 
with or a peak at intermediate values of forage quality (Hebblewhite 2006) and therefore 
considered all functional forms of each NDVI metric in forage quality models. If necessary, 
variables considered for the pseudothreshold form were adjusted by addition of a small 
value to allow log transformation. We used log-linear and linear regression using Program 
R version 3.4.3 (R Development Core Team 2018) to predict forage abundance and quality, 
respectively, as a function of the NDVI metrics and landscape covariates. We log 
transformed forage abundance to meet assumptions of normality for linear modeling. 

We used Akaike’s Information Criterion (AIC) to rank and select best-supported (𝛥AIC < 4; 
Burnham and Anderson 2002) models in several model tiers for each forage abundance 
and forage quality response variable. We used model tiers to reduce the number of 
competing models considered in each subsequent tier (Franklin et al. 2000). We removed 
any uninformative covariates from models advancing to the next tier (Arnold 2010). We 
used 5 model tiers to determine the most-supported functional forms and combinations of 
an NDVI metric and landscape covariates and to select models that best represent the 
relationship between elk nutritional resources and NDVI. 

In model tier 1, we competed univariate models of each hypothesized functional form of 
the NDVI metrics. We considered the most-supported functional forms of the NDVI metrics 
from this model tier in separate evaluations (i.e., for each NDVI metric functional form, we 
evaluated a second, third, and fourth model tier) excluding the fifth model tier that we used 
to compete the two NDVI metrics (described below). Within each respective evaluation, we 
included the NDVI metric functional form additively in all models of subsequent model 
tiers. In model tier 2, we competed hypothesized functional forms of each landscape 
covariate in independent sets for each covariate. We included in each set a “null” model 
with the NDVI metric functional form considered alone and, in the canopy cover set, models 
interacting canopy cover with the NDVI metric functional form. We did not evaluate canopy 
cover covariates in the TIN sets and WSp and WSSp covariates in the AMP sets due to 
collinearities with the respective NDVI metric. We advanced the most-supported covariate 
forms to model tier 3 in which we competed additive combinations of the most-supported 
functional forms in each of a terrain (ELEV, SLP, SRI, CTI, and PHEAT), and vegetation 
(VMap and canopy cover) model suite. We did not consider PHEAT with ELEV, SLP, SRI, or 
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CTI in the same models due to the similarity of landscape properties described by the 
covariates. In a precipitation suite, we compared WSp and WSSp in separate models (i.e., 
not considered additively). 

In model tier 4, we evaluated all additive combinations of the most-supported models from 
each model suite in model tier 3. We used model tier 5, if necessary, to compete the top 
models from each NDVI metric functional form’s respective fourth model tier. From model 
tier 5, we selected the most-supported model to make inference from; however, where 
substantial model selection uncertainty (𝛥AIC < 2; Burnham and Anderson 2002) existed 
between the NDVI metrics, we selected the model with the most-supported functional form 
for each NDVI metric (e.g., one model for each AMP and TIN metric). We assessed the fit of 
the models based on R2 values and evaluated the magnitude and direction of covariate 
effects on forage abundance and quality based on standardized coefficient estimates and 
sign, as well as comparisons of predictions estimated by holding covariates at mean values. 

Results 

Nutritional resources 

A total of 22 and 62 species comprised 95% of the summer-fall diets for the Elkhorn and 
Bitterroot Valley elk populations, respectively. Within the Elkhorn population, the most 
common graminoid forage species were Poa and Festuca spp., comprising 36.5% of the diet. 
The most common graminoid forage species within the Bitterroot Valley populations were 
Poa spp. and Carex spp., comprising 18.0-37.6% of the diets. Agropyron spp., Bromus 
tectorum, and Stipa comata were relatively common (16.1%) only to the North Sapphire 
diet. The most common forb forage species across all populations were Lupinus spp., 
comprising 6.2-12.1% of the diets. Balsamorhiza sagitata was common (2.6-5.5%) only to 
the Bitterroot Valley populations. Verbascum spp. and Medicago sativa were relatively 
common (7.1%) only to the North Sapphire diet. The most common shrub forage species in 
the Elkhorn population were Vaccinium spp., comprising 4.7% of the diet, and in the 
Bitterroot Valley populations were Salix spp. and Vaccinium spp., comprising 2.9-3.7% of 
the diets. Shepherdia canadensis and Physocarpus malvaceus were relatively common 
(3.1%) only to the North Sapphire diet. 

We sampled vegetation at 110 and 460 sites in the Elkhorn Mountains and Bitterroot 
Valley, respectively. Within the Elkhorn Mountains, the most common forb forage species 
included Lupinus SP (n=29), Astragalus SP (n=25), Lithospermum ruderale (n=6), and 
Equisetum arvense (n=5). The most common graminoid forage species included 
Pseudoroegneria spicata (n=59), Festuca idahoensis (n=54), and Carex geyeri (n=51). The 
most common shrub forage species included Vaccinium scoparium (n=54), Artemisia frigida 
(n=38), and Vaccinium membranaceum (n=34). Within the Bitterroot Valley, the most 
common forb forage species included Achillea millefolium (n=170), Balsamorhiza sagittata 
(n=116), Centaurea stoebe (n=108), and Xerophyllum tenax (n=108). The most common 
graminoid forage species included Carex geyeri (n=165), Pseudoroegneria spicata (n=153), 
and Festuca idahoensis (n=147). The most common shrub forage species included 
Symphoricarpos albus (n=143), Berberis repens (n=67), and Vaccinium membranaceum 
(n=66). 

18 | E v a l u a t i n g & I n f o r m i n g E l k H a b i t a t M a n a g e m e n t 



 

       
 

  
  

    
   

 

 

       
         

         
          
         

 

 

Median forage abundance was 25 g/m2 (ranging 0-419.7) and varied between the Elkhorn 
Mountains (9 g/m2) and Bitterroot Valley (30.4 g/m2) across vegetation cover types (Fig. 
2). Across all sampling sites, median forage abundance varied by vegetation cover type 
(Fig. 3). Median forage abundance was highest in GRASS-DRY (40.2 g/m2) and GRASS-WET 
(35.7 g/m2) and lowest in PIAL (1.1 g/m2) and LAOC (6 g/m2). Forage abundance was least 
variable in SHRUB-MESIC (± 26.5 g/m2) and PIPO (± 33.2 g/m2) and most variable in ABLA 
(± 101.5 g/m2) and LAOC (± 67.7 g/m2). 

Figure 2 - Herbaceous forage abundance (g/m2) measured within each vegetation cover type for the 
Elkhorn Mountains and Bitterroot Valley study areas of west-central Montana, USA, 2012-2017. Box-
and-whisker plots show the traditional 5-number summary (minimum, first quartile, median, third 
quartile, and maximum). Values along x-axis indicate the sample size within each vegetation cover 
type and study area. Refer to Table 2 for definitions of vegetation cover types. 
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Figure 3 - Herbaceous forage abundance (g/m2) measured within each vegetation cover type 
combined for the Elkhorn Mountains and Bitterroot Valley study areas of west-central Montana, USA, 
2012-2017. Box-and-whisker plots show the traditional 5-number summary (minimum, first quartile, 
median, third quartile, and maximum). Values along x-axis indicate the sample size within each 
vegetation cover type. Refer to Table 2 for definitions of vegetation cover types. 

Forage quality across sampling sites in the Bitterroot Valley averaged 2.74 ± 0.38 kcal/g 
and varied by vegetation cover types (Fig. 4). Mean forage quality was highest in POPUL 
(2.96 kcal/g) and PIPO (2.95 kcal/g) and lowest in TMIX (2.18 kcal/g) and PIAL (2.21 
kcal/g). Forage quality was least variable in POPUL (± 0.16 kcal/g) and PIPO (± 0.16 
kcal/g) and most variable in GRASS-WET (± 1.52 kcal/g) and ABLA (± 0.39 kcal/g). 
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Figure 4 - Forage quality (i.e., mean digestible energy; kcal/g) measured within each vegetation cover 
type for the Bitterroot Valley study area of west-central Montana, USA, 2012-2015. Box-and-whisker 
plots show the traditional 5-number summary (minimum, first quartile, median, third quartile, and 
maximum). Values along x-axis indicate the sample size within each vegetation cover type. Refer to 
Table 2 for definitions of vegetation cover types. 

NDVI metrics 

AMP values across all sampling sites averaged 0.21 ± 0.16 and varied between the Elkhorn 
Mountains (0.19 ± 0.19) and the Bitterroot Valley (0.22 ± 0.16). Across all sampling sites, 
AMP varied by vegetation cover types (Fig. 5). Mean AMP was highest in PIAL (0.60 g/m2) 
and GRASS-WET (0.53) and lowest in SHRUB-XERIC (0.12) and GRASS-DRY (0.13). AMP 
was least variable in PIAL (± 0.04) and SHRUB-XERIC (± 0.1) and most variable in TMIX (± 
0.22) and ABLA (± 0.2). TIN values across all sampling sites averaged 4.5 ± 1.3 and varied 
between the Elkhorn Mountains (3.8 ± 1.3) and the Bitterroot Valley (4.7 ± 1.2). Across all 
sampling sties, TIN varied by vegetation cover types (Fig. 5). Mean TIN was highest in LAOC 
(6.6 g/m2) and SHRUB-MESIC (5.6) and lowest in SHRUB-XERIC (2.9) and GRASS-DRY 
(3.1). TIN was least variable in LAOC (± 0.4) and PIAL (± 0.4) and most variable in SHRUB-
MESIC (± 1.1) and IMIX (± 1.0). 
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Figure 5 - Landsat Time Integrated NDVI and NDVI amplitude values within each vegetation cover 
type in the Elkhorn Mountains and Bitterroot Valley of west-central Montana, USA, 2012-2017. Box-
and-whisker plots show the traditional 5-number summary (minimum, first quartile, median, third 
quartile, and maximum). Mean values are indicated by cross-hair diamonds. Values along x-axis 
indicate the sample size within each vegetation cover type. Refer to Table 2 for definitions of 
vegetation cover types. 

Forage Abundance Analysis 

In model tier 1 for predicting forage abundance, the most-supported NDVI metric was 
linear AMP (Akaike weight [wi] = 0.46); however, linear TIN (wi = 0.21), pseudothreshold 
AMP (wi = 0.18), and pseudothreshold TIN (wi = 0.15) were also supported (𝛥AIC < 2.30). 
We therefore considered all NDVI metrics in separate model sets for each metric. In model 
tier 2, the NDVI metric sets shared similar support for the following functional forms of 
covariates: linear ELEV, linear and pseudothreshold SRI, and linear, quadratic, and 
pseudothreshold CTI (Table 3). For all NDVI metric sets, the most-supported SLP model 
was the null model containing only the NDVI metric. In both TIN sets, quadratic PHEAT, 
linear WSp, and linear WSSp were additionally supported, with further support for 
pseudothreshold WSSp in the linear TIN set. In both linear and pseudothreshold AMP sets, 
linear canopy cover was most-supported. 
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Table 3 - Tier 2 model selection results comparing forage abundance models within and across NDVI 
metric model sets for examining relationships of NDVI and elk nutritional resources in west-central 
Montana, USA, 2012-2017. The top models within 4 AIC units of the top-ranked model for each set are 
presented. Covariate superscripts indicate functional form (2 = quadratic, PS = pseudothreshold, 
[none] = linear). K = no. of parameters, wti = AIC weight. Models with uninformative parameters are 
not presented. Null model AIC = 2519.87. Refer to text for covariate descriptions. 

In the third model tiers, the NDVI metric model sets shared 3 most-supported models in 
the terrain model suite: (1) quadratic CTI, linear ELEV, and linear SRI; (2) quadratic CTI, 
linear ELEV, and pseudothreshold SRI; and (3) linear CTI, linear ELEV, and linear SRI 
(Table 4). The linear and pseudothreshold AMP sets had additional support for a model 
that included linear CTI, linear ELEV, and pseudothreshold SRI. The model with quadratic 
CTI, linear ELEV, and linear SRI was the top terrain model in each NDVI metric model set. In 
the linear and pseudothreshold TIN sets, the most-supported model in the vegetation suite 
included VMap. The most-supported models in the precipitation suite included linear WSSp 
and WSp; the linear TIN set additionally included pseudothreshold WSSp. In the linear and 
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pseudothreshold AMP sets, the most-supported models in the vegetation suite included: 1) 
canopy cover and VMap and 2) canopy cover alone. 

Table 4 - Tier 3 model selection results comparing forage abundance models within and across NDVI 
metric model sets for examining relationships of NDVI and elk nutritional resources in west-central 
Montana, USA, 2012-2017. The top models within 4 AIC of the top-ranked model for each set are 
presented. Covariate superscripts indicate functional form (2 = quadratic, PS = pseudothreshold, 
[none] = linear). K = no. of parameters, wti = AIC weight. Models with uninformative parameters are 
not presented. Refer to text for covariate descriptions. 

In the fourth model tiers, we ran 14 models in the linear AMP, pseudothreshold AMP, and 
linear TIN sets and 15 models in the pseudothreshold TIN set. Top models in each NDVI 
metric set included quadratic or linear CTI, linear ELEV, and linear or pseudothreshold SRI 
(Table 5). Three models were most-supported for both pseudothreshold and linear TIN 
sets and models included only terrain covariates. Seven and six models were most-
supported for linear and pseudothreshold AMP, respectively, and models varied whether 
linear canopy cover was included. No models in any NDVI metric set supported the 
inclusion of WSp, WSSp, or VMap. 

We ran 19 models in model tier 5 comparing across NDVI metric functional form model 
sets (Table 5). Model selection uncertainty indicated support for all linear and 
pseudothreshold AMP models, 2 pseudothreshold TIN models, and 1 linear TIN model. The 

24 | E v a l u a t i n g & I n f o r m i n g E l k H a b i t a t M a n a g e m e n t 



 

       
 

 

  
   

 

  
 

  
 

         
           

         
         

             
        

 

most-supported AMP model included pseudothreshold AMP, quadratic CTI, linear ELEV, 
linear SRI, and canopy cover. The second most-supported AMP model included linear AMP 
and shared the same landscape covariates. There was substantial model selection 
uncertainty between the top AMP and TIN metric models, with the most-supported (𝛥AIC = 
1.83) TIN model including pseudothreshold TIN, quadratic CTI, linear ELEV, and linear SRI. 
We therefore selected both the top AMP and TIN models for inference. The coefficient 
estimates from the top AMP model followed expected predictions, indicating that forage 
abundance increased: (1) as AMP and SRI increased, (2) to a maximum at moderate levels 
of CTI, and (3) as ELEV and CC decreased (Table 6; Fig. 6). The coefficient estimates from 
the top TIN model indicated similar relationships but with no effect of CC (Table 6; Fig. 7). 
Based on the standardized coefficient estimates of terrain covariates, ELEV and SRI had the 
largest effect size in both AMP and TIN models, followed by CC in the AMP model and CTI in 
the TIN model. The proportion of the variation (adjusted R2) in forage abundance explained 
by the covariates in both the top AMP and TIN models was 0.12. The proportion of the 
variation explained by pseudothreshold AMP alone and pseudothreshold TIN alone were 
both 0.01. 

Table 5 - Model selection results comparing forage abundance models within (model tier 4) and 
across (model tier 5) NDVI metric model sets for examining relationships of NDVI and elk nutritional 
resources in west-central Montana, USA, 2012-2017. The top models within 4 AIC of the top-ranked 
model for each set are presented. Covariate superscripts indicate functional form (2 = quadratic, PS = 
pseudothreshold, [none] = linear). K = no. of parameters, wti = AIC weight. Models with uninformative 
parameters are not presented. Refer to text for covariate descriptions. 
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Table 6 - Estimated coefficients and 95% confidence intervals for the top NDVI amplitude (AMP) and 
time-integrated NDVI (TIN) models examining relationships of NDVI and elk forage abundance in 
west-central Montana, USA, 2012-2017. Covariate superscripts indicate functional form (2 = 
quadratic, PS = pseudothreshold, [none] = linear). Bolded estimates indicate p < 0.05. Refer to text for 
covariate descriptions. 

Figure 6 - Predicted forage abundance (black line), 95% confidence intervals (shaded), and observed 
forage abundance (gray dots) across levels of canopy cover (CC) and solar radiation (SRI) estimated 
from the inferential NDVI amplitude (AMP) model for evaluating the relationship of NDVI and elk 
nutritional resources in west-central Montana, USA, 2012-2017. 
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Figure 7 - Predicted forage abundance (black line), 95% confidence intervals (shaded), and observed 
forage abundance (gray dots) across levels of elevation (ELEV) and solar radiation (SRI) estimated 
from the inferential time-integrated NDVI (TIN) model for evaluating the relationship of NDVI and elk 
nutritional resources in west-central Montana, USA, 2012-2017. 

Forage Quality Analysis 

In model tier 1 for predicting forage quality, the most-supported NDVI metric included 
quadratic AMP (wi = 1.0). The remaining NDVI metrics were 𝛥AIC > 17.2 and were 
therefore not considered in subsequent model tiers. In model tier 2, the most-supported 
functional forms included linear ELEV, linear and pseudothreshold SRI, linear and 
pseudothreshold PHEAT, and linear canopy cover (Table 7). The most-supported SLP 
model was the null model containing only quadratic AMP. In model tier 3, the most-
supported models in the terrain suite included: 1) linear ELEV and linear SRI and 2) linear 
ELEV and pseudothreshold SRI (Table 8). The most-supported model in the vegetation 
suite included: 1) linear canopy cover and VMap and 2) VMap alone. 
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Table 7 - Tier 2 model selection results comparing forage abundance models within and across NDVI 
metric model sets for examining relationships of NDVI and elk nutritional resources in west-central 
Montana, USA, 2012-2017. The top models within 4 AIC units of the top-ranked model for each set are 
presented. Covariate superscripts indicate functional form (2 = quadratic, PS = pseudothreshold, 
[none] = linear). K = no. of parameters, wti = AIC weight. Models with uninformative parameters are 
not presented. Refer to text for covariate descriptions. 

Table 8 - Tier 3 model selection results comparing forage abundance models within and across NDVI 
metric model sets for examining relationships of NDVI and elk nutritional resources in west-central 
Montana, USA, 2012-2017. The top models within 4 AIC of the top-ranked model for each set are 
presented. Covariate superscripts indicate functional form (2 = quadratic, PS = pseudothreshold, 
[none] = linear). K = no. of parameters, wti = AIC weight. Models with uninformative parameters are 
not presented. Refer to text for covariate descriptions. 

We ran 8 models in model tier 4 (Table 9), of which 6 had 𝛥AIC ≤ 1.17. The most-
supported model included linear canopy cover and VMap. All top models included VMap 
with the next nearest-ranking model without VMap having 𝛥AIC > 91.93. We selected the 
most-supported model for inference. In the top model, the coefficient estimates followed 
expected predictions, indicating that forage quality increased: (1) to a maximum at 
moderate levels of AMP and (2) as CC decreased (Table 10, Fig. 8). Coefficient estimates 
indicated that forage quality varied by VMap cover type with highest and lowest predicted 
forage quality in POPUL and TMIX, respectively. Based on the standardized coefficient 
estimates, the quadratic term of AMP had the largest effect size, followed by canopy cover. 
The proportion of the variation in forage quality explained by the covariates in the top 
model and by AMP alone was 0.39 and 0.03 (adjusted R2), respectively. 
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Table 9 - Tier 4 model selection results comparing forage quality models for examining relationships 
of NDVI and elk nutritional resources in west-central Montana, USA, 2012-2015. The top models 
within 4 AIC units of the top-ranked model for each set are presented. Covariate superscripts indicate 
functional form (2 = quadratic, PS = pseudothreshold, [none] = linear). K = no. of parameters, wti = 
AIC weight. Models with uninformative parameters are not presented. Refer to text for covariate 
descriptions. 

Table 10 - Estimated coefficients and 95% confidence intervals for the top model examining 
relationships of NDVI and elk forage quality in west-central Montana, USA, 2012-2015. Covariate 
superscripts indicate functional form (2 = quadratic, [none] = linear). Effects of VMap cover types are 
in relation to the reference (intercept) cover type GRASS-DRY. Bolded estimates indicate p < 0.05. 
Refer to text for covariate descriptions and Table 2 for definitions of VMap cover types. 
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Figure 8 - Predicted forage quality (black line), 95% confidence intervals (shaded), and observed 
forage quality (gray dots) for each VMap cover type in the inferential model for the relationship of 
NDVI and elk nutritional resources in west-central Montana, USA, 2012-2015. Refer to Table 2 for 
definitions of VMap cover types. 

Discussion 

We found some evidence for a relationship between NDVI and summer-fall nutritional 
resources for elk, and that NDVI, in association with other landscape attributes, may be 
useful for representing elk forage during the summer-fall on west-central Montana 
landscapes. In our models predicting both forage abundance and quality, NDVI amplitude 
was the most-supported NDVI metric. We additionally found time-integrated NDVI to share 
substantial support in our models predicting forage abundance. Time-integrated NDVI may 
better represent summer-fall resources for elk because it accounts for changes in 
vegetation beyond maximum productivity and extending throughout the late-summer and 
fall (unlike NDVI amplitude), the period when acquiring adequate nutrition is particularly 
important for female elk (Cook et al. 2004a, 2013, 2016). 

NDVI amplitude and time-integrated NDVI were predicted to be have a non-linear, positive 
association with forage abundance, and NDVI amplitude was predicted to have a quadratic 
association with forage quality, following our expectations based on previous studies of 
NDVI and its correlation with “greenness” (i.e., net primary productivity; Garroutte et al. 
2016) and quality (i.e., fecal nutrients; Ryan et al. 2012, Christianson and Creel 2009, 
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Hamel et al. 2009). The forage abundance model with NDVI amplitude predicted a 
threshold in forage abundance of approximately 42 g/m2 at sites with high solar radiation 
and open canopy and 27 g/m2 at similar sites with high canopy closure (Fig. 6). The forage 
abundance model with time-integrated NDVI model predicted a near-linear relationship 
that was most positive at low elevation sites with high solar radiation (ranging 19.5 - 59.1 
kcal/g) and less positive with increasing elevation or decreasing solar radiation (Fig. 7). 
The forage quality model indicated that forage quality peaked at intermediate levels of 
NDVI amplitude (approximately 0.18) and that the peak (ranging 2.32-2.99 kcal/g) varied 
by vegetation cover type (Fig. 8). This pattern likely reflects the association of intermediate 
levels of biomass with the highest levels of forage quality (Mueller et al. 2008, Hebblewhite 
et al. 2008, Pettorelli et al. 2011). 

The NDVI metrics, however, explained only a small amount of the variation in both forage 
abundance and quality (R2 = 0.01-0.03). The majority of the explained variation was 
accounted for by other landscape attributes, including terrain features, canopy cover, and 
vegetation cover type. Although uncertainty exists across the range of NDVI amplitude 
values, particularly at lower values (<0.2) where observed values of forage abundance 
ranged 0-305.6 g/m2, our results suggest that NDVI metrics should not be interpreted 
alone and without consideration of the effects of terrain, canopy, and vegetation cover type 
attributes. Our study, therefore, provides some evidence that NDVI metrics can be used as 
an index or to predict nutritional resources for elk on landscapes in west-central Montana; 
however, managers using NDVI as a proxy for elk forage should keep in mind that using 
NDVI alone may be insufficient to fully characterize habitat quality and that uncertainty 
exists in the relationship between NDVI and forage. Further investigation is needed to 
understand the specific relationship between elk selection patterns and NDVI, why elk 
select for areas of higher NDVI, what benefits elk receive from the vegetation associated 
with elevated NDVI (also see Section 4), and how managers can manipulate vegetation to 
increase NDVI response to benefit or redistribute elk on the landscape (also see Section 5). 

Several factors may have existed that limited our ability to detect a stronger relationship 
between NDVI and nutritional resources for elk. First, we considered only herbaceous plant 
species that were important in the summer-fall diets of elk and therefore excluded shrubs 
and non-forage herbaceous plants from estimates of forage abundance and quality. These 
excluded plants may influence the level of greenness measured by satellites and serve as 
the basis for a relationship between NDVI and biomass (Borowik et al. 2013, Garroutte et 
al. 2016). Elk are known to be intermediate foragers with the ability to consume and digest 
moderate volumes of food with relatively high cell wall concentrations (Cook 2002); 
nevertheless, elk demonstrate strong selectivity for high quality forage, particularly where 
abundance is high (Cook et al. 2016). Shrubs may also provide microclimates favorable to 
herbaceous species foraged by elk. Elk selection for areas of higher NDVI may reflect this 
foraging behavior if elk select for broad patches of higher total herbaceous and shrub 
abundance, which was not measured in our data, and for high quality forage at a finer scale 
within those broad patches. The resolution of NDVI, as measured by satellite, likely does 
not capture this fine-scale foraging behavior of elk. 

Second, while we attempted to account for the effect of tree canopy cover in the NDVI 
amplitude models (we could not do so for the time-integrated NDVI models due to 
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correlation), over-story tree canopy cover may have limited our ability to detect a 
relationship. We expected that the effect of the canopy on NDVI amplitude, for example, 
would be mediated given that the NDVI values we considered are a function of the total 
increase in NDVI from the start of the growing season to the maximum NDVI; any change in 
NDVI, therefore, should be related to changes in the understory vegetation due to the 
relatively constant greenness of coniferous canopies through the growing season. At high 
levels of canopy cover, however, signals from understory vegetation may have been 
effectively swamped out or blocked given that only a fraction of the radiation reflected 
originates from the ground layer in dense canopy forests (Wessels et al. 2006, Borowik et 
al. 2013). 

Third, NDVI may saturate for high abundance values given that it represents a two-
dimensional greenness measurement of vegetation cover (Hobbs 1995, Santin-Janin et al. 
2009). Saturated values of NDVI would result in lower values of NDVI amplitude and time-
integrated NDVI than might be expected and may explain why many higher estimates of 
forage abundance occur at lower values of NDVI amplitude or time-integrated NDVI (Fig. 6 
& 7). This may be particularly evident in areas with more open canopy cover where we 
might expect to find larger values of NDVI amplitude (Fig. 6). 

Lastly, forage abundance and quality are likely influenced strongly by micro-site conditions 
(e.g., soil mineral content, soil type, moisture retention, etc.) that cannot be measured by 
the satellite-derived NDVI products we used, given their spatial scale, and were not 
accounted for in our models. This disjunct between the spatial scale of our vegetation 
sampling and NDVI products may help explain the low proportion of variance explained by 
the models (forage abundance R2 = 0.12; forage quality R2 = 0.39), which were slightly 
below or at the low end of the range of reported R2 from other studies predicting measures 
of forage abundance (0.18-0.76; Borowik et al. 2013, Garroutte et al. 2016) and quality 
(0.37-0.9; Ryan et al. 2012, Garroutte et al. 2016, Hamel et al. 2009) with NDVI. 
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S e c t i o n 4 - N D V I & E l k N u t r i t i o n a l C o n d i t i o n 

Introduction 

Variation in nutrition strongly influences many aspects of ungulate ecology, including body 
mass dynamics, body fat levels, pregnancy rate, over-winter survival, timing of parturition, 
juvenile growth rates and survival, and neonatal birth mass and survival (Cook et al. 2004a, 
2013, 2016, Herfindal et al. 2006, Parker et al. 2009, Monteith et al. 2014, Proffitt et al. 
2016a). The spatial and temporal distribution and availability of nutritional resources 
across large landscapes can vary considerably, which may have important effects to 
ungulate nutritional condition and potentially demographic performance. Given the strong 
association of NDVI with the greenness of vegetation cover, NDVI has been used as a proxy 
for the availability of nutritional resources and may indicate nutritional benefit to 
ungulates (Pettorelli et al. 2005). NDVI has been positively associated with fecal nitrogen in 
mountain goats, bighorn sheep, and African buffalo (Hamel et al. 2009, Ryan et al. 2012), 
suggesting it is a good indicator of forage quality that may be imparting nutritional benefits 
(Pettorelli et al. 2011). Evidence for a direct relationship between NDVI and nutritional 
condition of ungulates is limited, however. Whereas studies have shown positive 
correlations of NDVI with body condition (Pettorelli et al. 2005, 2006, Martínez-jauregui et 
al. 2009, Ryan et al. 2012) and reproduction (Ryan et al. 2007, Wittemyer et al. 2007, 
Trimble et al. 2009) in a variety of ungulate species, a lack of a correlation has been found 
in some populations in these same studies (Pettorelli et al. 2006, Martínez-jauregui et al. 
2009) and other studies (Mysterud et al. 2007). 

For elk, the relationship between NDVI and summer-fall nutritional resources (Section 3), 
combined with strong selection by elk for areas with higher NDVI during the late summer 
(Ranglack et al. 2016, 2017) provides some evidence that differences in NDVI across a large 
landscape can be interpreted as differences in elk forage abundance and quality. However, 
data are lacking to understand if differences in elk exposure to NDVI are related to 
differences in elk nutritional condition. This information may benefit managers by allowing 
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use of an easily obtainable metric (NDVI) for large-scale monitoring and managing of 
nutritional condition in populations of elk and to identify populations that may have 
nutritional limitations affecting pregnancy and productivity. To address this, we used elk 
location and nutritional condition data, measured by body fat and pregnancy status, to 
evaluate if variation in individual elk exposure to NDVI is correlated with biologically 
meaningful variation in nutritional condition. 

Methods 

We used location and nutritional condition data collected from collared elk to determine if 
differences in individual elk exposure to NDVI were associated with differences in body fat 
and pregnancy rates. We captured > 30 female adult (≥ 1.5 years old) elk per population 
using helicopter net-gunning or chemical immobilization in compliance with the Montana 
Fish, Wildlife and Parks (FWP19-2013) and University of Montana (027-11MHWB-
042611) animal handling protocols. 

Captures occurred in the late fall (November-December) and winter (January-March). We 
sampled elk body condition and pregnancy status and fitted elk with Global Positioning 
System radiocollars. Each elk was sampled only one time. Fall sampling occurred in the 
East Fork and West Fork populations during 2012 and 2013, and winter sampling occurred 
in the East Fork and West Fork populations during 2011, 2012, and 2013, the North 
Sapphire population in 2014, and the Elkhorn population in 2015. We sampled different 
individuals within each population during each season and year. We collected a blood 
sample from each elk to estimate pregnancy status based on pregnancy-specific protein-B 
levels (Noyes et al. 1997) and assessed lactation status during fall sampling based on the 
presence of milk in the udder, presence of saliva on the udder, and overall udder size. 
During winter sampling, we were unable to determine if elk had lactated the previous 
summer and fall. We estimated body fat by calculating ingest-free body fat (IFBF) from 
measurements of chest girth and allometrically-scaled estimates of maximum thickness of 
the rump-fat layer obtained using a portable ultrasound machine (Cook et al. 2010). We 
aged elk based on tooth eruption patterns and classified elk into three age classes: yearling 
(1), prime (2-9) and older (10+). We screened blood samples for exposure to a suite of 
common diseases previously known to occur in Montana and removed elk with brucellosis 
seropositive results to reduce confounding of nutritional condition with disease effects. 

We programmed radiocollars to collect 1-48 locations per day and drop off after 2 years. 
We collected elk location data across 2 years (2014-2015) in the North Sapphire 
population, 3 years (2011-2013) in the East Fork and West Fork populations, and 2 years 
(2015-2016) in the Elkhorn population. From each individual’s associated radiocollar 
locations, we retained only the first year of locations after sampling of nutritional 
condition. We used these locations to estimate individual elk exposure to NDVI during the 
summer-fall (July 1-August 31) prior to sampling of nutritional condition based on 
evidence that most individual elk selected summer-fall home ranges within the same areas 
each year (Appendix C). We removed individuals that had no recorded locations due to 
collar malfunctions or mortality. We estimated exposure to NDVI for each individual elk by 
first estimating a summer-fall home range based on a 95% kernel utilization distribution 
(using the adehabitatHR package in Program R version 3.4.3; R Development Core Team 
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2018), and, second, calculating the mean NDVI value within the summer-fall home range 
during the summer-fall prior to body condition and pregnancy sampling. We evaluated 
both NDVI amplitude (AMP) and time-integrated NDVI (TIN) that we found to be supported 
in our evaluation of the association of NDVI with elk forage abundance and quality (Section 
3). 

We used linear and logistic regression models in Program R version 3.4.3 (R Development 
Core Team 2018) to investigate the effect of elk exposure to NDVI metrics on IFBF and 
pregnancy status, respectively. We estimated relationships for IFBF separately for fall and 
winter sampling events given the expected decline in body fat levels during winter. For 
fitting models of pregnancy rate, we combined data from fall and winter sampling events 
for each population and year (e.g., fall 2011 and winter 2012 data from the West Fork 
combined as 2012 data). We competed several hypothesized models for each response (fall 
IFBF, winter IFBF, and pregnancy rate) that included additive combinations of age class, 
population, and year variables (Tables 13 and 14). We used a population variable to 
account for unmeasured factors (e.g., harvest management or predators) specific to each 
population that may be influencing the nutritional condition of elk. We evaluated AMP and 
TIN metrics separately for each IFBF and pregnancy model suite. We competed the two 
estimates of elk exposure to NDVI (mean NDVI and proportion NDVI) by additively 
including each estimate separately in each hypothesized model. We fit and compared 
models using Akaike’s Information Criterion corrected for small sample sizes (AICc; 
Burnham and Anderson 2002). 

In fall IFBF models, we controlled for lactation status in all models because of its 
importance in predicting fall IFBF (Proffitt et al. 2016a) and we expected that the 
relationship between elk exposure to NDVI and fall IFBF might vary due to increased 
energetic demands for supporting lactation (Cook et al. 2004a). In winter IFBF models, we 
evaluated a year variable to account for differences in weather conditions experienced 
during the winter each year that may be influencing body fat levels. We additionally 
evaluated a population-year (e.g., “Sapphire-2014”) variable in winter IFBF models to 
account for the effect of population and year because winter sampling events occurred in 
study areas during different years. In pregnancy models, we included the effect of IFBF in 
all models given its important influence on pregnancy rate (Proffitt et al. 2016a). 

We expected that elk exposed to greater levels of NDVI would have higher levels of IFBF 
and rates of pregnancy based on the positive relationship of forage abundance with AMP 
and TIN (Section 3) and the evidence that elk select for areas with higher NDVI (Ranglack 
et al. 2016, 2017). Alternatively, the quadratic relationship between forage quality and 
AMP (Section 3) and the evidence for the importance of high quality forage for female elk 
(Cook et al. 2004a, 2013, 2016) may indicate that intermediate levels of NDVI enhance elk 
nutritional condition. In our evaluations, therefore, we lastly compared top models within 
each model suite with models including a pseudothreshold and quadratic functional form 
of the NDVI metric. We tested for the effect of the NDVI metric by including a model 
identical to the top model but excluding the NDVI metric. 

Post hoc, after selecting a final inferential model for the relationship between fall IFBF and 
mean TIN, we evaluated whether the availability of higher quality areas within summer-fall 
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home ranges was an important predictor of IFBF. We estimated the availability of higher 
quality areas by calculating the proportion of the summer-fall home ranges greater than or 
equal to a TIN threshold value. We used the 75th percentile of TIN values from within all 
elk summer-fall home ranges as a threshold value. We then compared the top model with 
models including a linear and a pseudothreshold effect of the proportion TIN variable in 
place of the mean TIN variable. 

Results 

We captured, sampled nutritional condition, and collected radiocollar locations from a total 
of 172 female elk. In the fall, we sampled IFBF and pregnancy status from a total of 33 elk. 
Age of elk sampled in the fall averaged 5.2 ± 2.3 (SD). Thirty-one and 2 elk were prime- and 
older-age, respectively. Fall IFBF averaged 8.66 ± 2.78% , 76% were pregnant, and 44% 
were lactating. In the winter, we sampled IFBF from a total of 136 elk and pregnancy status 
from a total of 137 elk. Age of elk sampled in the winter averaged 6.4 ± 2.8. One hundred-
twelve, 21, and 6 elk were prime-, older-, and unknown age, respectively. Winter IFBF 
averaged 7.09 ± 1.85% and 88% were pregnant. Fall IFBF varied by population, year, and 
lactation status (Table 11; panel A in Figure 9). Winter IFBF varied by population and year 
(Table 11; panel A in Figure 10). Across both fall and winter sampling events, pregnancy 
rates averaged 87.7, 75.0, 90.5, and 88.9% for the East Fork, West Fork, Sapphire, and 
Elkhorn populations, respectively, and varied by year for the East Fork and West Fork 
(panel A in Figure 11). 

Table 11 - Summary of ingesta-free body fat (IFBF; %), pregnancy rate, and lactation rate from fall 
(Nov.-Dec.) and winter (Jan.-Mar.) capture events in 4 populations of west-central Montana, USA, 
2011-2015. Lactation could not be assessed during winter captures. 
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Figure 9 - Ingesta-free body fat (IFBF; A), mean NDVI amplitude (AMP; B), and time-integrated NDVI 
(TIN; C) values within individual summer-fall ranges for elk sampled during fall (Nov.-Dec.) captures 
in the West Fork and East Fork populations of west-central Montana, USA, 2011-2012. 
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Figure 10 - Ingesta-free body fat (IFBF; A), mean NDVI amplitude (AMP; B), and time-integrated NDVI 
(TIN; C) values within individual summer-fall ranges for elk sampled during winter (Jan.-Mar.) 
captures in 4 populations of west-central Montana, USA, 2011-2015. 
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Figure 11 - Pregnancy rate (A), average mean NDVI amplitude (AMP; B), and time-integrated NDVI 
(TIN; C) within individual summer-fall ranges for elk sampled during fall (Nov.-Dec.) and winter (Jan.-
Mar.) captures in 4 populations of west-central Montana, USA, 2011-2015. 

We collected an average of 727.6 (± 77.6), 2249.2 (± 1034), 1944.8 (± 1123.8), and 48.6 (± 
10.7) summer-fall locations per elk in the Sapphire, West Fork, East Fork, and Elkhorn 
populations, respectively. Summer-fall home ranges of elk averaged 46.5 (± 22.1), 36.1 (± 
23.3), 44.6 (± 26.9), and 36.2 (± 26.1) km2 in the Sapphire, West Fork, East Fork, and 
Elkhorn populations, respectively. 

Mean AMP and TIN values of summer-fall home ranges of the summer-fall previous to 
capture and sampling averaged 0.284 ± 0.078 and 4.3 ± 0.61, respectively, and varied by 
sampling event, population, year, and lactation status (Table 12; panels B and C in Figures 
9, 10, and 11). We assumed summer-fall home ranges were similar between the year elk 
were radiocollared and the previous year prior to sampling. 
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Table 12 - Summary of average NDVI amplitude (AMP) and time-integrated NDVI (TIN) values of 
summer-fall home ranges from the summer-fall previous to capture and sampling of nutritional 
condition of elk in 4 populations of west-central Montana, USA, 2011-2015. 

Fall Ingesta-free Body Fat Analysis 

We evaluated 4 AMP and 4 TIN models predicting fall IFBF (Table 13). In both the AMP and 
TIN model comparisons, the most-supported model included the respective NDVI metric 
and lactation status (R2 = 0.18 and 0.43, respectively). Model selection uncertainty in both 
model comparisons indicated potential importance for the additional effect of age class or 
population. The most-supported AMP model predicted 2.6% higher IFBF for non-lactating 
elk than for lactating elk (p < 0.01) and a 0.36% decrease in IFBF for every 0.1-unit 
increase in AMP (p = 0.51; Table 14; panel A in Fig. 12). However, 95% confidence intervals 
overlapped 0 and there was substantial support for the same model that lacked the effect of 
mean AMP (𝛥AICc = -2.02; R2 = 0.19). The model including a pseudothreshold effect of 
mean AMP was only marginally more supported (𝛥AICc = -0.12; R2 = 0.18) than the top 
model; however, models including the pseudothreshold and quadratic (𝛥AICc = 2.35; R2 = 
0.16) effect of mean AMP were less supported than the model lacking mean AMP. 

The most-supported TIN model predicted 2.4% higher IFBF for non-lactating elk than for 
lactating elk (p < 0.01) and a 2.8% increase in IFBF for every 1-unit increase in mean TIN (p 
< 0.01). The model including a pseudothreshold effect of mean TIN was marginally more 
supported (𝛥AICc = -0.04; R2 = 0.37) than the top model and identified a near-identical 
relationship (Table 14; panel B in Fig. 12). The models including the quadratic effect of 
mean TIN (𝛥AICc = 2.80; R2 = 0.34) and lacking TIN (𝛥AICc = 6.09; R2 = 0.19) were less 
supported than the top model. In the post hoc evaluation of the availability of high quality 
areas in summer-fall home ranges, the TIN threshold value was calculated to be 5.14. The 
proportion of summer-fall ranges equal to or greater than the threshold value averaged 
0.25 ± 0.2. The models including a pseudothreshold and linear effect of the proportion of 
the summer-fall ranges equal to or greater than the threshold value were 0.44 and 0.16 
AICc more supported than the model including the pseudothreshold effect of mean TIN, 
respectively. The pseudothreshold model predicted a positive curvilinear relationship with 
a decreasing effect on fall IFBF as mean TIN increases (Table 15; panel C in Fig. 12). 
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Table 13 - Model selection results for models examining relationships of NDVI amplitude (AMP) and 
time-integrated NDVI (TIN) with ingesta-free body fat (IFBF) and pregnancy rate of elk from 4 
populations sampled in fall (Nov.-Dec.) and winter (Jan.-Mar.) in west-central Montana, USA, 2011-
2015. K = no. of parameters, wti = AICc weight. 
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Table 14 - Estimated coefficients and 95% confidence intervals for the top model examining 
relationships of NDVI amplitude (AMP) and time-integrated NDVI (TIN) with ingesta-free body fat 
(IFBF) of elk from the East Fork and West Fork populations sampled in fall (Nov.-Dec.) and winter 
(Jan.-Mar.) in west-central Montana, USA, 2011-2015. For the fall IFBF model, effects of lactation are in 
relation to the reference (intercept) of non-lactating elk. For the winter IFBF model, effects of age and 
population are in relation to the reference of old-age class elk in the East Fork population. Covariate 
subscript of PS indicates pseudotheshold functional form. Bolded estimates indicate p < 0.05. 

Figure 12 - Predicted fall ingesta-free body fat (IFBF) for non-lactating (solid line) and lactating 
(dashed line) elk, 95% confidence intervals (shaded), and observed IFBF levels (gray dots) estimated 
from the top model evaluating the relationship of mean NDVI amplitude (AMP; A), mean time-
integrated NDVI (TIN; B), and proportion of summer-fall range equal to or greater than 5.14 TIN (C) 
with fall IFBF of elk from the East Fork and West Fork populations in west-central Montana, USA, 
2011-2012. 

Table 15 - Estimated coefficients and 95% confidence intervals for the post hoc inferential model 
examining relationships of proportion of summer-fall range equal to or greater than 5.14 TIN with fall 
ingesta-free body fat (IFBF) of elk from the East Fork and West Fork populations in west-central 
Montana, USA, 2011-2012. Effects of lactation are in relation to the reference (intercept) of non-
lactating elk. Covariate superscript of PS indicates pseudotheshold functional form. Bolded estimates 
indicate p < 0.05. 
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Winter Ingesta-free Body Fat Analysis 

We evaluated 7 AMP and 7 TIN models predicting winter IFBF (Table 13). In both the AMP 
and TIN model comparisons, the most-supported model included the respective NDVI 
metric, population, and age class (R2 = 0.11 for each). Model selection uncertainty indicated 
potential importance for the effect of population-year instead of population in both model 
comparisons and of age alone in the TIN model comparison. The most-supported AMP 
model predicted 1.0% higher IFBF for prime-age elk than for old-age elk (p = 0.02; Table 
14; panel A in Fig. 13). Elk in the Sapphire population were predicted to have 0.7% higher 
IFBF (p = 0.16) and elk in the West Fork and Elkhorn populations were predicted to have 
0.5 (p = 0.37) and 0.6% (p = 0.23) lower IFBF, respectively, than elk in the East Fork 
population. Confidence intervals for the effects of population overlapped zero, however. 
The model predicted a 0.16% decrease in IFBF for every 0.1-unit increase in mean AMP (p 
= 0.5); however, confidence intervals overlapped 0 and there was more support for the 
same model that lacked the effect of mean AMP (𝛥AICc = -1.47; R2 = 0.11). The model 
including a pseudothreshold effect of mean AMP was marginally more supported (𝛥AICc = -
0.34; R2 = 0.11) than the top model; however, models including the pseudothreshold and 
quadratic (𝛥AICc = 0.03; R2 = 0.11) effect of mean AMP were less supported than the model 
lacking mean AMP. 

The most-supported TIN model predicted 1.0% higher IFBF for prime-age elk than for old-
age elk (p = 0.02; Table 14; panel A in Fig. 13). Elk in the Sapphire population were 
predicted to have 0.6% higher IFBF (p = 0.27) and elk in the West Fork and Elkhorn 
populations were predicted to have 0.4 (p = 0.36) and 0.6% (p = 0.20) lower IFBF, 
respectively, than elk in the East Fork population. Confidence intervals for the effects of 
population overlapped zero, however. The model predicted a 0.28% increase in IFBF for 
every 1-unit increase in mean TIN (p = 0.3); however, confidence intervals overlapped 0 
and there was more support for the same model that lacked the effect of mean TIN (𝛥AICc 
= -1.04; R2 = 0.11). The model including a pseudothreshold effect of mean TIN was 
marginally more supported (𝛥AICc = -0.21; R2 = 0.11) than the top model; however, models 
including the pseudothreshold and quadratic (𝛥AICc = 1.46; R2 = 0.11) effect of mean TIN 
were less supported than the model lacking mean TIN. 
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Figure 13 - Predicted winter ingesta-free body fat (IFBF) for prime- (solid line) and old-age (dashed 
line) elk, 95% confidence intervals (shaded), and observed IFBF levels (gray dots) across 4 
populations estimated from the top model evaluating the relationship of mean NDVI amplitude (AMP; 
A) and mean time-integrated NDVI (TIN; B) with winter IFBF of elk in west-central Montana, USA, 
2011-2015. 

Pregnancy Analysis 

We evaluated 4 AMP and 4 TIN models predicting pregnancy rate (Table 13). In both the 
AMP and TIN model comparisons, the most-supported model included the respective NDVI 
metric and IFBF. Model selection uncertainty indicated potential importance for the 
additional effect of age class and population. The most-supported AMP model predicted 
that for every 1% increase in IFBF and 0.1 increase in mean AMP, the odds of pregnancy 
increased by a factor of 1.4 (p < 0.01) and decreased by a factor of 1.1 (p = 0.81), 
respectively (Table 16; panel A in Fig. 14). Confidence intervals overlapped 0 for the effect 
of mean AMP, however, and there was substantial support for the same model that lacked 
the effect of mean AMP (𝛥AICc = -2.02). The model including a pseudothreshold effect of 
mean AMP was similarly supported as the top model (𝛥AICc = 0.00) and the model 
including quadratic effect of mean AMP was least supported (𝛥AICc = 2.09). 

The most-supported TIN model predicted that for every 1% increase in IFBF and 1-unit 
increase in mean TIN, the odds of pregnancy increased by a factor of 1.4 (p < 0.01) and 
decreased by a factor of 1.1 (p = 0.81), respectively (Table 16; panel B in Fig. 14). 
Confidence intervals overlapped 0 for the effect of mean TIN, however, and there was 
substantial support for the same model that lacked the effect of mean TIN (𝛥AICc = -2.03). 
The model including a pseudothreshold effect of mean TIN was similarly supported as the 
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top model (𝛥AICc = 0.00) and the model including quadratic effect of mean TIN was least 
supported (𝛥AICc = 2.02). 

Table 16 - Estimated coefficients, standard errors, and 95% confidence intervals for the top model 
examining relationships of mean NDVI amplitude (AMP) and mean time-integrated NDVI (TIN) with 
pregnancy rate of elk from 4 populations sampled in fall (Nov.-Dec.) and winter (Jan.-Mar.) in west-
central Montana, USA, 2011-2015. Bolded estimates indicate p < 0.05. 

Figure 14 - Predicted probability of pregnancy (black line), 95% confidence intervals (shaded), and 
observed pregnancy status (gray dots) for elk across levels of ingesta-free body fat (IFBF) estimated 
from the top model evaluating the relationship of NDVI amplitude (AMP; A) and time-integrated NDVI 
(TIN; B) with pregnancy rate of elk sampled in fall (Nov.-Dec.) and winter (Jan.-Mar.) in west-central 
Montana, USA, 2011-2015. 
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Discussion 

We found strong support for a relationship between the amount of elk exposure to time-
integrated NDVI during the summer-fall and fall body fat levels, and only minimal evidence 
for other relationships of NDVI metrics with measures of elk body fat. The most-supported 
model with the strongest relationship indicated that elk with summer-fall ranges 
containing higher average levels of time-integrated NDVI had significantly greater IFBF 
levels during the fall. This model was substantially more supported than the same model 
with NDVI amplitude (𝛥AICc = 8.2) and explained 24% more variation than the same model 
lacking an NDVI metric. We also found some evidence for a positive relationship between 
time-integrated NDVI and winter IFBF levels across all elk populations, indicating that the 
nutritional benefits from greater exposure to areas with higher time-integrated NDVI 
during the summer-fall may be sustained through the winter season; however, there was 
uncertainty in this relationship, and a model lacking the NDVI metric was more supported. 

The remaining models that considered the effect of time-integrated NDVI on pregnancy 
rates and of NDVI amplitude on body fat levels and pregnancy rates predicted negative 
relationships with uncertainty in the estimates and were less supported than models 
lacking NDVI metrics. These results suggest a lack of association between NDVI metrics and 
pregnancy rates. This may be because reproduction is more strongly linked to elk access to 
nutrition across multiple years (Cook 2002) and pregnancy rates across most populations 
were generally high in our populations, likely associated with the body fat levels exceeding 
thresholds that would otherwise limit pregnancy (Cook et al. 2004a, 2013). 

Our findings that time-integrated NDVI correlates with fall body fat levels corroborates the 
relationship between pseudothreshold time-integrated NDVI and summer-fall nutritional 
resources (Section 3) given that fall body fat levels are strongly associated with the intake 
of nutritional resources during the previous summer and fall (Cook 2002, Cook et al. 2004a, 
2013) and that the time-integrated NDVI metric incorporates greenness signals that accrue 
throughout the growing season (unlike NDVI amplitude). Although models including NDVI 
amplitude were more supported in our previous analysis of NDVI and nutritional 
resources, there was also substantial support for a model with pseudothreshold TIN. The 
model with pseudothreshold TIN performed only marginally better than the linear form 
and identified a near-identical relationship (results not shown). These correlations 
between time-integrated NDVI, nutritional resources, and body fat levels of elk also follow 
previous resource selection studies where elk were found to select for areas with higher 
time-integrated NDVI during the summer and fall (Ranglack et al. 2016, 2017). 

The importance of the effect of time-integrated NDVI on fall body condition may not apply 
to all other elk populations in Montana, however, because our results were based only on 
two populations in near-proximity to each other in the Bitterroot Valley. Previous studies 
of elk and other ungulate species have found both positive correlations (Pettorelli et al. 
2005, 2006, Martínez-jauregui et al. 2009, Ryan et al. 2012) and no correlations (Pettorelli 
et al. 2006, Mysterud et al. 2007, Martínez-jauregui et al. 2009) of NDVI with body 
condition, even in populations within the same study (Pettorelli et al. 2006, Martínez-
jauregui et al. 2009). This may be due to different populations with dissimilar 
environmental conditions and being influenced by environmental drivers in different ways 
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(Martínez-jauregui et al. 2009). For example, harvest management, predators, limited 
resources, or parasites, which may have differing effects on the nutritional condition of elk, 
may vary across populations. Additional data regarding fall body fat, pregnancy, and 
nutritional resources across a broader geographical area are needed to further refine our 
understanding of NDVI, body fat, and pregnancy relationships. 
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S e c t i o n 5 - N D V I & L a n d s c a p e D i s t u r b a n c e s 

Introduction 

Forest management practices, such as timber harvest and prescribed fire, and natural 
disturbances, such as wildfire, have the potential to influence the distribution and 
availability of nutritional resources for elk (Jourdonnais and Bedunah 1990, Pearson et al. 
1995, Sachro et al. 2005, Long et al. 2008, Proffitt et al. 2016a, Cook et al. 2016). These 
changes may in turn influence the productivity and distribution of elk populations (Turner 
et al. 1994, Van Dyke and Darragh 2007, Romme et al. 2011, Sittler et al. 2015). In addition, 
the effect of disturbances changes over time and likely varies by the type and severity of 
the disturbance, as well as site-specific environmental conditions (Canon et al. 1987, Long 
et al. 2008, Jain et al. 2012, Proffitt et al. 2016a, Cook et al. 2016). These disturbances can 
be common and widespread across landscapes, making ground-investigation and 
monitoring of changes to nutritional resources for elk challenging. Additionally, landscape-
scale information on the effect of disturbances on nutritional resources is often unavailable 
to managers interested in understanding how disturbances, or in using disturbances to, 
influence or benefit elk populations. 

Given its availability and spatial resolution, NDVI has been posited as a potential index for 
monitoring changes in vegetation in grasslands and forests due to landscape disturbances 
(Goodin and Henebry 1997, Hicke et al. 2003, Goetz et al. 2006, Spruce et al. 2011, Olsson 
et al. 2016), sometimes with varying results (Beurs and Townsend 2008, Eklundh et al. 
2009, Buma 2012). In boreal forests disturbed by wildfires, NDVI has been found to 
dramatically decrease following burning, with a gradual increase to pre-fire levels within 5-
10 years (Hicke et al. 2003, Goetz et al. 2006). In other studies of boreal forests, NDVI 
increased to a peak 20-50 years after wildfire which was followed by gradual decreases to 
pre-fire levels (Kasischke and French 1997). In subalpine forests, NDVI was not associated 
with post-wildfire vegetation recovery (Buma 2012). Limited studies exist for the effect of 
forest treatments on NDVI, but indicate that NDVI is poorly correlated with thinning or 
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prescribed burn treatments (Arnett et al. 2015, Su et al. 2016). For forested landscapes in 
the Rocky Mountains, very limited information exists for understanding the relationship 
between NDVI and disturbances, particularly across multiple forest community types. This 
information may be useful for understanding how disturbances affect nutritional resources 
for elk given evidence from this study that NDVI is correlated with elk forage (Section 3) 
and body condition (Section 4). 

The forested landscapes within our study areas have a varied history of disturbances due 
to forest management activities and natural events (i.e., timber harvest, prescribed 
burning, and wildfire; see Section 2). Our objective for this study was to evaluate the 
relationship between NDVI and these forest disturbances in several time-since-disturbance 
classes to: 1) understand how different types of disturbances may influence elk forage 
(and, therefore, nutritional condition), and 2) provide land and wildlife managers with 
information on how to use or manage disturbances to influence or benefit elk nutritional 
resources 

Methods 

We obtained data for each type of forest disturbance (wildfire, thinning, prescribed 
burning, thinning followed by prescribed burning [henceforth, thinning-prescribed 
burning], and clearcutting) from multiple sources. We obtained wildfire polygons for 1985-
2015 from the U.S. Forest Service’s Fire History for Region 1 database 
(https://www.fs.usda.gov/detailfull/r1/landmanagement/gis) and additional polygons 
from the Bitterroot National Forest Fire History database 
(https://www.fs.usda.gov/detailfull/bitterroot/landmanagement/gis/). We obtained 
prescribed burn polygons for 1996-2016 from the U.S. Forest Service’s Hazardous Fuel 
Treatment Reduction database (https://data.fs.usda.gov/geodata/edw/datasets.php) and 
additional polygons from the Lolo National Forest (personal communication). We 
considered the prescribed burning disturbance type to be any treatment activity indicated 
as a prescribed or broadcast burn, and we excluded burning of piled materials. For thinning 
and clearcutting data, we obtained timber harvest activity polygons for 1980-2017 from 
both the U.S. Forest Service’s Hazardous Fuel Treatment Reduction database and the 
Timber Harvest database (https://data.fs.usda.gov/geodata/edw/datasets.php). We 
obtained additional timber harvest polygons from the Bitterroot National Forest 
Hazardous Fuel Reductions Treatment database 
(https://www.fs.usda.gov/detailfull/bitterroot/landmanagement/gis/). We considered the 
thinning disturbance type to be any treatment activity indicated as thinning and that 
reduced the density of understory trees through the removal of selected trees and shrub. 
We considered the clearcut disturbance type to be treatment activities indicated as 
biomass removal. For the thinning-prescribed burning disturbance, we considered only 
polygons that had prescribed burning occur within 3 years after thinning. 

We considered only disturbances that fell within the extent of our study areas and the U.S. 
Forest Service’s Region 1 Vegetation Mapping Program (VMap) data. For each disturbance 
type and based on the available disturbance data, we considered 5 years (1999, 2003, 
2007, 2011, and 2015) of NDVI data to capture annual variation in NDVI values associated 
with vegetation cover types and amount of time since disturbance. From the annual 
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disturbance information in the database(s) for each disturbance type, we classified the 
landscape into 5 classes of time-since-disturbance: undisturbed, 1-5, 6-10, 11-20, and ≥ 21 
years post-disturbance. The undisturbed class included areas that were not disturbed by 
any of the treatments we considered. The ≥ 21 years post-disturbance class represents 
areas where a disturbance occurred between 21 and the oldest recorded year available 
within the time-span of the disturbance data (i.e., a maximum of 30, 25, 65, and 109 years 
post-disturbance for wildfire, prescribed burning, thinning, and clearcutting datasets, 
respectively). For the thinning-prescribed burning type, we calculated time-since-
disturbance based on the year of the prescribed burning treatment. 

For each year of NDVI data, we first created spatial polygons that included each 
combination (i.e., strata) of disturbance type and time-since-disturbance class, such that 
only the most recent disturbance type was used and no disturbance type was overlapping 
spatially. This allowed us to eliminate areas with multiple disturbance types from 
comparison. We used stratified random sampling to select 4,000 point locations 
proportionally allocated across strata based on area for sampling of the attributes of points 
and NDVI. Due to low sample sizes within some strata, we ensured a minimum of 100 
points were selected in each strata and accounted for the disproportionate sampling in our 
analysis using weighted regression (see below). To the sampling points, we extracted the 
strata, vegetation cover types, terrain covariates, and NDVI values and combined all points 
from each year into one dataset. We delineated vegetation cover types from VMap classes, 
using only the forested cover types identified in Section 3 (Table 2; i.e., including only 
PSME [Pseudotsuga menziesii], PICO [Pinus contorta], PIPO [Pinus ponderosa], PIAL [Pinus 
albicaulis], LAOC [Larix occidentalis], IMIX [mixed shade-intolerant species], TMIX [mixed 
shade-tolerant species], and POPUL [Populus spp.]). We included terrain covariates to 
account for environmental factors that may influence vegetation and vegetation response 
to disturbance. Terrain covariates included elevation (ELEV), slope (SLP), solar radiation 
(SRI), compound topography index (CTI), and the precipitation-, heat load-, and elevation 
adjusted topographic index (PHEAT; described in Section 3). We used time-integrated 
NDVI (TIN) because we found it to be consistently associated with elk forage (Section 3) 
and body condition (Section 4). 

Prior to analysis, we assessed Pearson correlation coefficients of covariate pairs and found 
no collinearity (|r| > 0.6; Appendix B). We did not consider PHEAT with ELEV, SLP, SRI, or 
CTI in the same models due to the similarity of landscape properties described by the 
covariates. We standardized all continuous covariates. 

We first fit a two-way analysis of variance (ANOVA) with an interaction between 
disturbance type and time-since-disturbance class using Program R version 3.4.3 (R 
Development Core Team 2018) to evaluate: 1) how TIN varies by disturbance type and by 
time-since-disturbance, and 2) how the effect of disturbance type depends on time-since-
disturbance. We used Tukey’s honestly significant difference (HSD) to test all pairwise 
differences in disturbance types and time-since-disturbance classes. Tukey’s HSD 
difference values represent the difference in mean TIN values between the two groups 
being compared. We then analyzed each disturbance type separately using weighted linear 
regression to model TIN as a function of time-since-disturbance and other spatial 
covariates. To account for the disproportionate sampling of point locations, we weighted 
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the points based on the proportion of the total area of each strata, where the smaller strata 
received less weight. We fit the same model for each disturbance type and used the same 
data for the undisturbed class as the reference level to allow for comparisons among 
disturbance types to be made. We selected this model prior to splitting the data into 
separate datasets for each disturbance type by using backwards-stepwise model selection 
based on a global model that included: 1) disturbance type, 2) time-since-disturbance, 3) 
vegetation cover type, 4) an interaction of disturbance type and time-since-disturbance, 5) 
an interaction of disturbance type and vegetation cover type, and 6) terrain covariates 
excluding PHEAT. We used P = 0.05 as the threshold for inclusion or exclusion of predictor 
variables. To evaluate the importance of PHEAT, we used AIC to compare the resulting 
model with the same model where we replaced the supported terrain covariates with 
PHEAT. 

We then fit the most-supported model to each disturbance type dataset, excluding the 
terms containing disturbance type. For each disturbance type analyses, we assessed the fit 
of the model based on R2 values. We interpreted the effects of disturbance on TIN based on 
the direction and magnitude of coefficient estimates and sign and on predictions made by 
holding continuous covariates at their mean value. To account for error due to multiple 
comparisons, we evaluated significance of estimates based on a Bonferonni-corrected 
alpha-level of 0.01. We compared the effects of disturbance on TIN across disturbance 
types. 

Results 

We sampled a total of 89,011 point locations across the 5 disturbance types, 5 time-since-
disturbance classes, and 5 years (Table 17; Fig. 15). Of these points, 18,919, 17,281, 17,659, 
17,158, and 17,994 fell in areas disturbed by wildfire, prescribed burning, thinning, 
thinning-prescribed burning, and clearcutting, respectively. The number of points falling in 
VMap classes varied for each disturbance type and time-since-disturbance class (Fig. 16). 
Across all disturbance types, TIN averaged 4.74 ± 0.9 (SD). TIN averaged 4.66 ± 0.93, 4.76 ± 
0.9, 4.78 ± 0.88, 4.74 ± 0.89, and 4.77 ± 0.89 in areas disturbed by wildfire, prescribed 
burning, thinning, thinning-prescribed burning, and clearcutting, respectively. TIN varied 
across time-since-disturbance classes (Fig. 15). 

Table 17 - Area (km2) and number (n) of point locations sampled within each disturbance type and 
time-since-disturbance (TSD) class. The same undisturbed data were used for each disturbance type 
dataset and included 15,679 points sampled from 20,597.1 km^2. 
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Figure 15 - Counts (A) and boxplots (B) of sampling points located in disturbance types across values 
of TIN for each time-since-disturbance class in west-central Montana, USA. The undisturbed 
disturbance type is faded and the y-axis is scaled to better display the remaining disturbance types. 

We found strong evidence (P < 0.001) for differences in mean TIN between disturbance 
types and time-since-disturbance classes and for an interaction between disturbance type 
and time-since-disturbance class based on the ANOVA. The Tukey HSD test of disturbance 
types, however, indicated that only the pairwise comparisons of wildfire with all other 
disturbance types were significantly different (P < 0.001; Table 18). The Tukey HSD test of 
time-since-disturbance classes indicated all pairwise comparisons were significantly 
different (P < 0.05). 

The most-supported model from the backwards-stepwise model selection included: 1) 
disturbance type, 2) time-since-disturbance, 3) vegetation cover type, 4) an interaction of 
disturbance type and time-since-disturbance, 5) an interaction of disturbance type and 
vegetation cover type, 6) ELEV, 7) SLP, 8) SRI, and 9) CTI. This model was substantially 
more supported than the model replacing PHEAT with the terrain covariates (𝛥AIC = 
4191.4). We therefore fit the model with the following covariates to each disturbance type 
dataset: time-since-disturbance, vegetation cover type, ELEV, SLP, SRI, and CTI. 

The effect of the time-since-disturbance classes on TIN varied across the disturbance 
models (Table 19; Fig. 17). The wildfire model (adjusted R2 = 0.24) predicted TIN to be 
lower for all post-fire years relative to the undisturbed class (P < 0.001). Following wildfire, 
TIN was predicted to decline 13.1% to lowest values in 6-10 years and then increase in 
subsequent years (i.e., a 3.2% decrease from the undisturbed state). The prescribed burn 
model (adjusted R2 = 0.21) predicted TIN to decrease 6.3% to lowest values within the first 
5 years (P < 0.001) and then increase beyond 6 years following burning. TIN was predicted 
to be higher than the undisturbed class beyond 11 years and at highest values ≥ 21 years 
after burning, increasing 3.9% and 10.1% from the undisturbed state for the 6-10 year and 
≥ 21 year classes, respectively. All time-since-disturbance classes greater than 6 years 
were not significantly different than the undisturbed class (P > 0.01), however. 
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Figure 16 - Counts of sampling points located in disturbance types across values of TIN for each VMap 
vegetation class and each time-since-disturbance class in west-central Montana, USA. The 
undisturbed disturbance type is faded and the y-axis is scaled to better display the remaining 
disturbance types. VMap vegetation classes include PSME (Pseudotsuga menziesii), PICO (Pinus 
contorta), PIPO (Pinus ponderosa), PIAL (Pinus albicaulis), LAOC (Larix occidentalis), IMIX (mixed 
shade-intolerant species), TMIX (mixed shade-tolerant species), and POPUL (Populus spp.). 
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Table 18 - Tukey Honestly Significantly Different pair-wise comparisons of differences in time-
integrated NDVI for disturbance types and time-since-disturbance classes in west-central Montana, 
USA. Bolded estimates indicate p < 0.05. 

The thinning model (adjusted R2 = 0.22) predicted TIN to be 3.2-7.5% higher for all post-
treatment years relative to the undisturbed class and to increase to highest values ≥ 21 
years after treatment (P < 0.001). The time-since-disturbance classes between 1-10 years 
were not significantly different than the undisturbed class, however. The thinning-
prescribed burn model (adjusted R2 = 0.21) predicted TIN to increase 4.7% within the first 
10 years, then decrease to lowest values 11-20 years (a 3.4% decrease from the 
undisturbed state), and finally increase ≥ 21 years after treatment (a 1.8% decrease from 
the undisturbed state). The highest TIN was predicted to occur 6-10 years after combined 
thinning-prescribed burning treatment; however, all time-since-disturbance classes were 
not significantly different than the undisturbed class. The clearcut model (adjusted R2 = 
0.22) predicted TIN to increase 0.4% within 5 years, then decrease to lowest values from 6-
10 years (P < 0.001; a 7.9% decrease from the undisturbed state), and finally increase to 
highest values ≥ 21 years after treatment (a 6.7% increase from the undisturbed state). 
The time-since-disturbance classes spanning 1-5 and 11-20 years were not significantly 
different from the undisturbed class, however. 

Across disturbance types, the highest predicted TIN values that were significantly different 
from the undisturbed class occurred in areas thinned ≥ 21 years prior (7.5% greater), 
followed by areas clearcut ≥ 21 years prior (6.7% greater) and areas thinned 11-20 years 
(5.5% greater) prior. The highest predicted TIN values occurring in areas treated 1-10 
years prior had been thinned and thinned-prescribed burned, a 3.2-5.9% and 1.4-4.7% 
increase from the undisturbed state, respectively. Confidence intervals overlapped 0 for all 
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positive estimated coefficients in these time-since-disturbance classes across disturbance 
types, however. The lowest predicted TIN values that were significantly different from the 
undisturbed class occurred in areas burned by wildfire 6-10 years (13.1% less), 1-5 years 
(10.1% less), and 11-20 years (9.7% less) prior, followed by areas clearcut 6-10 years 
(7.9% less) and burned by prescribed fire 1-5 years (6.2% less) prior. 

The effect of the forested VMap classes on TIN was generally consistent across disturbance 
types (Table 19; Fig. 17). TIN was predicted to be highest in LAOC (5.36) followed by PICO 
(5.05) and PSME (4.93) and lowest in PIAL (3.75) followed by PIPO (4.28) and POPUL 
(4.46). Confidence intervals excluded 0 for all VMap classes except TMIX across all 
disturbance models (P = 0.10-0.21) and PICO in the wildfire model (P = 0.32). Across 
disturbance types, TIN was predicted to decrease with increasing elevation (P < 0.001) and 
solar radiation (P < 0.001) and increase with increasing slope (P < 0.001) and compound 
topography index (P < 0.001). 

Table 19 - Estimated coefficients and 99% confidence intervals (Bonferonni-corrected) for models 
examining relationships of time-integrated NDVI (TIN) and disturbances in west-central Montana, 
USA. Effects of disturbances are in relation to the reference (intercept) time-since-disturbance (TSD) 
undisturbed class in PSME forested areas. Bolded estimates indicate p < 0.01. Continuous covariates 
are standardized. VMap vegetation classes include PSME (Pseudotsuga menziesii), PICO (Pinus 
contorta), PIPO (Pinus ponderosa), PIAL (Pinus albicaulis), LAOC (Larix occidentalis), IMIX (mixed 
shade-intolerant species), TMIX (mixed shade-tolerant species), and POPUL (Populus spp.). 
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Figure 17 - Predicted time-integrated NDVI (TIN) across disturbance types, VMAP vegetation classes, 
time-since-disturbance classes, and slope (SLP) in west-central Montana, USA. For differentiation of 
lines, 99% confidence intervals (Bonferonni-corrected) are not shown (refer to Table 19). VMap 
vegetation classes include PSME (Pseudotsuga menziesii), PICO (Pinus contorta), PIPO (Pinus 
ponderosa), PIAL (Pinus albicaulis), LAOC (Larix occidentalis), IMIX (mixed shade-intolerant species), 
TMIX (mixed shade-tolerant species), and POPUL (Populus spp.). 

Discussion 

We found strong support for associations of TIN with landscape disturbance, such as 
wildfire, prescribed burning, thinning, thinning-prescribed burning (i.e., prescribed 
burning within 3 years of thinning), and clearcutting, and number of years since 
disturbance (Table 19; Fig. 17). Our results indicate that the greatest positive effect on TIN 
occurred in areas thinned ≥ 11 years and clearcut ≥ 21 years prior. There was also 
marginal evidence that areas burned by prescribed fire ≥ 11 years, thinned 1-10 years, and 
thinned-prescribed burned 1-10 years prior had a positive effect on TIN. The greatest 
negative effect on TIN occurred in areas burned by wildfire. TIN was substantially reduced 
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within the first 10 years and appeared to be returning to undisturbed levels after 21 years 
following wildfire. There was also strong evidence that TIN decreased in areas burned by 
prescribed fires 1-5 years and clearcut 6-10 years prior decreased TIN and marginal 
evidence that TIN decreased in areas burned by prescribed fires 6-10 years, thinned-
prescribed burned ≥ 21 years, and clearcut 11-20 years prior. 

Overall, our results suggest that thinning and thinning-prescribed burning treatments are 
the most likely to yield the greatest short-term (1-10 years) increases in TIN; however, 
there was only weak evidence for this effect. There was no strong evidence that the 
additional effort of prescribed burning after thinning was different from thinning only; the 
effect of the additional effort on TIN was estimated to be less than thinning only. For longer 
time-frames (≥ 11 years), thinning may result in the greatest increases in TIN, however, 
there was strong evidence that clearcutting increased TIN after 21 years and weak 
evidence that prescribed burning increased TIN after 11 years. Thinning activities may 
create conditions most favorable to understory regrowth due to effects on microclimate, 
light, and soil nutrients and moisture (Moir 1966, Uresk and Severson 1989, Thomas et al. 
1999, Naumburg and DeWald 1999, Ares et al. 2009). While the effects of thinning and 
prescribed burning on elk forage have varied across studies (Cook et al. 2016, Pilliod et al. 
2006, Demarais and Krausman 2000, Peck and Peek 1991, Long et al. 2008, Proffitt et. al in 
review), the effect may depend on regional climates and environments. In Section 6, we 
further discuss these results in light of our previous evaluations of elk nutritional resources 
(Section 3) and fall nutritional condition (Section 4). 

We found that differences in TIN were associated with forest vegetation cover types and 
were generally consistent across disturbance types (Table 19; Fig. 17). Overall, the highest 
TIN values were associated with LAOC; however, because of the deciduous nature of this 
species, these associations were likely more due to seasonal leaf-growth in the tree canopy 
than to understory vegetation available to elk. High TIN values were also associated with 
PICO and PSME. The lowest TIN values were associated with PIAL, PIPO, and POPUL. It is 
likely that the effect of time-since-disturbance on TIN also depends on vegetation cover 
type, however, we did not pursue this relationship and suggest that future evaluations 
consider this added complexity. Additionally, we could not account for any changes in 
forest vegetation types that may have occurred following disturbance due to the 
temporally invariant VMap classifications. 

Our analysis provides a generalized evaluation of the relationships between TIN and forest 
disturbances; however, there are certain limitations to consider. First, these results suggest 
that certain treatments may increase TIN which may be associated with increases in elk 
forage (see Section 6). We did not know what plant species grow across time in response to 
these disturbances, however, and the relationship between TIN and forage for elk is 
therefore uncertain. Further research is needed to characterize the forage species that 
respond to various disturbances through time. 

Second, we could not account for variation in the severity of wildfires or prescribed burns 
or the intensity or method of the different forest treatments. We found strong declines in 
TIN in all years following wildfires, a surprising result contrary to previous research in the 
same study area based on the same ground-based vegetation data used in this study 
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(Section 3) that indicated that wildfire generally increased forage quality and abundance 
for elk (Proffitt et al. 2017, Proffitt et al. in review). Our results may be related to the 
inclusion of different burn areas or a greater number of burns that burned at higher 
severities and consequently had limited revegetation. It is also plausible that wildfires 
decrease non-forage species while increasing forage species, but the increase in forage 
species is not substantial enough to be detectable by satellites. Alternatively, areas burned 
by natural fires may see strong responses from new growth of trees which may reduce the 
amount of understory vegetation due to shading or reduce the amount of greenness of the 
understory vegetation detectable by satellites. For areas affected by forest treatments, 
considerable variation in thinning or prescribed burning techniques (e.g., the number and 
size of trees removed or the time of year of a prescribed burn) likely existed in our data. 
Some techniques may affect TIN more strongly than others, however, we could not 
disentangle these associations. More detailed research would be required to understand 
the response of NDVI to wildfire and variable treatment techniques. 

Third, we attempted to isolate the effect of each disturbance type by excluding areas that 
had experienced multiple types of disturbance within the span of available disturbance 
data. We recognize, however, that the composition and development of dry mixed-conifer 
forests are likely driven by multiple disturbance types which may respond to successive 
disturbances in different ways (Jain et al. 2012, Willms et al. 2017). Additionally, our 
disturbance data were limited by the amount of historical events available (i.e., the oldest 
recorded year of disturbance available was 30, 25, 65, and 109 years in the wildfire, 
prescribed burning, thinning, and clearcutting datasets). Because the majority of forests 
likely have historically experienced multiple disturbances, even of the same disturbance 
type, resulting in a diversity of vegetative compositions and structures (Willms et al. 2017), 
there is some limitation in the ability to generalize of our results to areas with multiple 
disturbance events. Lastly, additional research evaluating the effect of disturbances should 
consider areas affected by insect infestations that can strongly influence tree mortality and 
vegetation conditions. 
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S e c t i o n 6 - E l k H a b i t a t M a n a g e m e n t R e c o m m e n d a t i o n s 

Management strategies focused on altering the distribution and availability of summer 
nutritional resources for elk may provide an important means of manipulating 
distributions and health of elk populations. Here, we provide recommendations for forest 
treatments that may be valuable for improving the nutritional capacity of forested 
landscapes based on the results of the current study. We developed this study and the 
following recommendations in response to a need for integrating management of 
nutritional resources into forest management plans and to maintain elk nutritional 
resources and distributions on public lands during the summer and fall seasons. These 
recommendations are intended to be used holistically in conjunction with other 
management techniques for helping land and wildlife managers meet objectives for elk 
populations and habitat. 

We found some evidence that NDVI amplitude (AMP) and time-integrated NDVI (TIN) are 
related to forage abundance and forage quality for elk (Section 3). While both NDVI metrics 
are strongly related to other landscape attributes (e.g., overstory canopy cover, vegetation 
community type, and terrain), management strategies focused on treatments for 
manipulating AMP and TIN may enhance nutritional resources for elk. Managers could 
direct treatments on sites that are predicted to have the lowest forage abundance and 
quality. The AMP and TIN relationships indicated that sites at high elevation (up to 2700 m 
[9000 ft]), with low solar radiation, and with high overstory canopy cover have the lowest 
forage abundance (Table 6; Fig. 6 and Fig. 18) and sites with high overstory canopy cover 
have the lowest forage quality (Table 10; Fig. 19). At sites where AMP levels are low (< 
0.18), that generally may include dry grasslands, dry shrublands, and Larix occidentalis, 
Pinus ponderosa, Pseudotsuga menziesii, and shade-intolerant mixed forests (Fig. 5), 
treatments designed to increase AMP may enhance both forage abundance (Fig. 6) and 
forage quality (Fig. 8). At sites where AMP levels are higher (> 0.18), increases in AMP are 
predicted to have a diminishing positive response on forage abundance and a negative 
response on forage quality. Sites that are likely to have high AMP values that may benefit 
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from reductions in AMP for enhancing forage quality while only marginally reducing forage 
abundance include wet grasslands and shrublands and Abies lasiocarpa, Pinus albicaulus, 
Pinus contorta, Pseudotsuga menziesii, shade-intolerant mixed, shade-tolerant mixed, and 
Populus spp. forests (Fig. 5). Management efforts directed at increasing TIN are predicted 
to near-linearly enhance forage abundance regardless of community type, but the effect is 
stronger at sites at lower elevations and with higher solar radiation (Fig. 7). 

Management efforts to improve the nutritional capacity of landscapes for elk may also 
consider reducing overstory canopy cover through thinning or logging, a recommendation 
that is further supported from our analysis of NDVI and landscape disturbances (see below; 
Section 5) and in a recent study in western Washington and Oregon forests (Cook et al. 
2016). Our results provide some evidence that reducing canopy cover will increase forage 
abundance across all forest cover types, particularly at low elevation sites with high solar 
radiation and intermediate values of compound topographic index (Fig. 18), and increase 
forage quality, particularly in Pinus contorta, Pinus ponderosa, and shade-intolerant mixed 
forests (Fig. 19). Reductions in canopy cover increase forage abundance and quality across 
the entire range of canopy cover (0-75% in our data), similar to results from Cook et al. 
(2016), but the effect is stronger at lower canopy cover (approximately < 20% canopy 
cover). Eliminating canopy cover is predicted to maximize both forage abundance and 
quality across all sites; however, such treatments may not be effective for increasing forage 
abundance at high elevation and low solar radiation sites due to these sites demonstrating 
a negligible response to reductions in canopy cover, and may have other negative effects on 
elk including loss of thermal cover and/or security. 
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Figure 18 - Predicted forage abundance with 95% confidence intervals across levels of canopy cover 
and solar radiation in the inferential model for the relationship of NDVI amplitude and elk forage 
abundance in west-central Montana, USA, 2012-2015. 
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Figure 19 - Predicted forage quality (digestible energy; kcal/g) with 95% confidence intervals across 
levels of canopy cover within each VMap forest cover type in the inferential model for the relationship 
of NDVI amplitude and elk forage quality in west-central Montana, USA, 2012-2015. Refer to Table 2 
for definitions of VMap cover types. 

We found strong support for a relationship of TIN with both forage abundance (Section 3) 
and fall ingesta-free body fat of elk (Section 4), indicating that TIN may be a more 
biologically relevant metric for assessing elk forage than AMP. Fall body fat levels are 
strongly associated with the intake of nutritional resources during the previous summer 
and fall (Cook 2002, Cook et al. 2004a, 2013), and TIN is more likely to represent 
cumulative nutritional resources during this period given that it incorporates greenness 
signals that accrue throughout the growing season, unlike AMP that represents only green 
up conditions. Elk that were exposed to higher levels of TIN within their home ranges 
during the summer-fall period had significantly higher body fat levels during the 
subsequent fall after controlling for lactation (Fig. 13). The importance of TIN to nutritional 
condition may be further supported by the more uncertain but positive relationship 
between TIN and winter body fat levels (Fig. 13). This suggests that TIN may represent 
higher quality habitats on summer range which may be due, in part, to higher forage 
abundance located in these areas. Forage abundance was positively correlated with TIN, 
and this relationship was strongest at low elevation sites with high solar radiation and 
intermediate values of compound topographic index (Fig. 7). 
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Land managers may be able to improve the nutritional capacity of landscapes and 
manipulate elk distribution during the summer-fall by implementing forest treatments that 
increase levels of TIN available on elk summer-fall ranges (Section 5). We found that each 
type of forest disturbance (wildfire, prescribed burning, thinning, thinning followed by 
prescribed burning, and clearcutting) created a different response in TIN, indicating that 
different treatment methods aren’t likely to mimic each other and shouldn’t be considered 
as surrogates or replacements (Schwilk et al. 2009, McIver et al. 2013). Our results suggest 
that treatment activities that include thinning are most likely to result in the greatest long-
term (≥ 11 years) increases in TIN (Table 19; Fig. 17). Thinning is predicted to also 
increase TIN in the short-term (< 10 years), however, there is some uncertainty in this 
finding. Prescribed burning within 3 years after thinning increases TIN within 10 years; 
however, our results do not show evidence that the additional effort of prescribed burning 
after thinning was different from thinning only. Other treatment techniques, however, may 
be more appropriate in certain areas, depending on management objectives and 
constraints. It may also be beneficial to use multiple treatments across broad areas to 
create a temporally and spatially dynamic landscape of varying levels of TIN. Other 
treatment strategies that may benefit elk habitat by increasing TIN within the first 5 years 
could include clearcutting, within 11-20 years could include prescribed burning alone, and 
beyond 20 years could include clearcutting. Evidence for the short term effect of 
clearcutting and the effect of prescribed burning to increase TIN are weak, but there is 
strong evidence for the long term effect of clearcutting. These treatment effects also varied 
by forest vegetation type, with the lowest TIN values occurring generally in PIAL, PIPO, and 
POPUL, and the highest occurring generally in PSME and TMIX. We suggest that focusing 
management treatments in forest vegetation types that are common within a region but 
with the lowest nutritional value. Managers may also consider treating areas identified as 
important seasonal travel corridors for elk to reduce potential movement to lower 
elevation forage. 

Wildfires were predicted to substantially decrease TIN values across all years post-fire 
suggesting that elk forage also decreased. These results were contrary to previous research 
completed in the same study area based on the same ground-based vegetation data used in 
this study (see Section 3) that found wildfire to generally increase the quality and 
abundance of elk forage (Proffitt et al. 2017, Proffitt et al. in review). We suggest that the 
difference in our results may be due to one or more reasons. First, the results may be 
driven by the inclusion of different burn areas or a greater number of burns that were of 
higher severity and consequently had limited vegetation regrowth. Second, while there 
may have been an increase in forage species after fire, it may not have been enough to be 
detected by the satellites if non-forage species were simultaneously reduced by fire and did 
not recover. Third, areas with different moisture availabilities or forest types may respond 
differently to wildfire (e.g., regrowth and duration of green vegetation may be limited on 
drier upland sites compared to wetter, lower sites) which we did not account for in our 
analysis. Lastly, strong responses from new growth of trees may reduce the amount of 
understory vegetation due to shading or reduce the amount of greenness of the understory 
vegetation detectable by satellites. These uncertainties highlight the need for more detailed 
research on the response of NDVI to wildfire to better inform management of wildfires for 
elk forage. 
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We caution that because we did not perform validations of our models, our results may 
only be applicable to our study areas and not transferable to other areas. Our two study 
areas, however, represent climate and vegetation community types that are common 
across west-central and south-western Montana. Additionally, there was uncertainty in the 
NDVI-nutrition relationships, and our results indicated that the NDVI metrics play a small 
role in explaining elk forage relative to other landscape attributes. NDVI is itself a crude 
measure of vegetation that integrates several, complicating aspects of the vegetation (e.g., 
different species of varying vegetative forms, vigor, structures, horizontal and vertical 
densities, reflectance, absorption, and transmissivity; Pettorelli 2013) and may only be 
capturing portions of the signals related to elk forage. To further clarify relationships 
between NDVI and nutritional resources for elk, and to make results more transferable 
across populations of western Montana, more research would be needed that improves 
study design by matching the scale of elk forage measurements to that measured by NDVI, 
collecting data from additional populations representing the full diversity of landscapes 
occupied by elk in western Montana, and performing model validation in new areas. 
Similarly, more research is needed to determine if the relationships between TIN and fall 
ingesta-free body fat are consistent across elk populations. 
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A p p e n d i x A - E s t i m a t i o n o f F o r a g e Q u a l i t y 

Estimation of phenological stage-specific digestible energy 

In the Bitterroot Valley study area, we estimated variation in phenological stage of plant 
species to account for the effect of plant phenology on nutritional availability. In 2014-
2015, we estimated the dominant phenological stage (emergent, flowering, fruiting, mature 
seed, or senescent) of each species at each sampling site. The emergent stage included 
green plant tissues in the newly emergent, flowering and/or fruiting stages, and plants in 
the emergent stage were assigned an average forage quality value that was the mean of the 
newly emergent, flowering, and fruiting stages (see below). In 2012-2013, we estimated 
the phenological stage of each species at a sample of phenology plots that were stratified 
across major phenological gradients including elevation, aspect (north, south, flat), and 
canopy coverage (open and closed) and applied these averaged phenological stage-specific 
forage quality values for each species to plants within all sampling sites. We constrained 
the phenology data to 15 July-31 August to correspond to the summer-fall nutritional 
period (Cook et al. 2013) and applied the species-specific phenological classifications to all 
sampling sites. 

For each phenological stage of each forage species, we estimated digestible energy (kcal/g; 
DE) by collecting at least 5 plant samples in each of 5 phenological stages (newly emergent, 
flowering, fruiting, mature seed, and senescent). Replicate plant samples were collected 
from different areas, then combined into one composite sample and dried at 50° C for 48 
hours. We estimated dry matter digestibility using sequential detergent fiber analysis (Van 
Soest (1982); Wildlife Habitat and Nutrition Lab, Washington State University, Pullman, 
WA, USA) and an equation developed for wild ungulates (Robbins et al. 1987a, 1987b, 
Hanley et al. 1992). We then converted dry matter digestibility values to DE (Cook et al. 
2016). For phenological stages that lacked representative samples, we used literature 
values from previous studies (Hebblewhite 2006) or averaged by genus (if available) or 
lifeform. We applied the same phenological stage-specific DE values to all sampling sites in 
the Bitterroot Valley (see Comparison of phenological stage-specific forage quality 
estimates). 

Across sampling sites in the Bitterroot Valley, the average proportion of forb forage species 
in each respective phenological stage (emergent, flowering, fruiting, mature seed, and 
senescent) was 0.35, 0.12, 0.14, 0.30, and 0.09, respectively. For graminoid forage species, 
average proportions were 0.33, 0.04, 0.09, 0.46, and 0.08, respectively. For shrub forage 
species, average proportions were 0.45, 0.04, 0.38, 0.10, and 0.03, respectively. 

We collected an average of 8 plant samples per species per phenological stage from 31 
forage species to estimate DE. DE for all forage plants averaged 2.92 ± 0.37 (SD) and varied 
by species (Table A1) and phenological stage (Table A2). 

Estimation of mean forage quality at sampling sites 

We screened each sampling quadrat to include only forage species and rescaled species 
percent cover to estimate the proportion of each forage species in each phenological stage 
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such that the total summed to 1.0 (Fig. A1). We used the proportion cover (i.e., availability) 
and phenological stage-specific DE estimates for each forage species to estimate the mean 
DE of forage species by calculating a weighted mean DE using rescaled proportion cover as 
the weight. Last, we averaged the DE estimates across the 5 sampling quadrats, and we 
refer to this value as the forage quality per sampling site. 

Figure A1 – Methods for estimating mean forage quality (i.e., digestible energy; kcal/g) at each 
vegetation sampling site in the Bitterroot Valley in west-central Montana, USA, 2012-2015. 
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Comparison of phenological stage-specific forage quality 
estimates 

To determine if a single mean DE value for each phenological stage of each forage plant 
species could be applied to all sampling sites across the Bitterroot Valley study area, we 
tested for differences in phenological stage-specific DE values between plant samples 
collected from the northern (North Sapphire) and southern (East Fork and West Fork) 
regions of the study area. We first identified 5 forage species (Carex geyeri, Chamerion 
angustifolium, Lupinus sericeus, Xerophyllum tenax, and Lupinus spp.) occurring within the 
elk diets in at least one of the elk populations. We collected 5 samples in each phenological 
stage of these species from each study area region. We then tested for differences in DE 
between study area regions for each species and species-specific phenological stage using 
the Bonferroni multiple comparison method to perform pair-wise comparisons of the 
means. We detected a significant difference only for flowering Xerophyllum tenax in the 
species-phenological stage pair-wise comparison between study area regions (p=0.005), 
indicating that the mean DE in the southern region was 0.35 kcal/g greater than the 
northern region (SE=0.1). Based on these results, we concluded there were no substantial 
differences in forage quality between study area regions, and we applied a single 
phenological stage-specific mean DE value for each forage species to both study area 
regions (Table A1). 

Table A1 - Mean digestible energy (DE, kcal/g), standard deviation (SD), and sample size (N) for elk 
summer-fall forage species in each phenological stage applied to all sampling sites in the Bitterroot 
Valley study area in south-west Montana, USA, 2011-2015. Missing values replaced from literature. 
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Table A2 - Mean digestible energy (DE, kcal/g), standard deviation of DE (SD), and sample size (N) of 
each phenological stage for each lifeform of elk summer-fall forage species in the Bitterroot Valley in 
south-west Montana, USA, 2011-2015. 
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A p p e n d i x B - M u l t i c o l l i n e a r i t y o f M o d e l C o v a r i a t e s 

Figure B1 - Pairwise plots of Pearson correlation coefficients, histograms, and x-y scatter plots of 
covariates considered in the model suites for evaluating the relationship between elk nutritional 
resources and NDVI. 
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Figure B2 - Pairwise plots of Pearson correlation coefficients, histograms, and x-y scatter plots of 
covariates considered in models evaluating the relationship between NDVI and landscape 
disturbances. 
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A p p e n d i x C - S u m m e r - f a l l H o m e R a n g e F i d e l i t y o f 
I n d i v i d u a l E l k 

We compared annual fidelity of summer-fall home ranges by individual female elk by: 1) 
selecting elk with 2 years of location data that overlapped the summer-fall season (July 1-
August 31), 2) calculating summer-fall home ranges of individual elk for each year based on 
a 95% kernel utilization distribution (using the adehabitatHR package in Program R 
version 3.4.3; R Development Core Team 2018), and 3) calculating the proportion of area 
overlap of summer-fall home ranges for each individual. We calculated proportion overlap 
for 63 elk. The average proportion overlap of summer-fall home ranges was 0.6860095 ± 
0.2158755 (SD). 44.4% and 82.5% of elk summer-fall ranges overlapped ≥ 75% and ≥ 
50%, respectively, providing relatively strong evidence that elk select for the same 
summer-fall home ranges each year. 
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