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ABSTRACT

The critical role of forests in the global carbon cycle

is well known, but significant uncertainties remain

about the specific role of disturbance, in part be-

cause of the challenge of incorporating spatial and

temporal detail in the characterization of distur-

bance processes. In this study, we link forest

inventory data to remote sensing data to derive

estimates of pre- and post-disturbance biomass, and

then use near-annual remote sensing observations

of forest disturbance to characterize biomass loss

associated with disturbance across the contermi-

nous U.S. between 1986 and 2004. Nationally,

year-to-year variability in the amount of live

aboveground carbon lost as a result of disturbance

ranged from a low of 61 Tg C (±16) in 1991 to a

high of 84 Tg C (±33) in 2003. Eastern and western

forest strata were relatively balanced in terms of

their proportional contribution to national-level

trends, despite eastern forests having more than

twice the area of western forests. In the eastern

forest stratum, annual biomass loss tracked

closely with the area of disturbance, whereas in the

western forest stratum, annual biomass loss

showed more year-to-year variability that did not

directly correspond to the area of disturbance,

suggesting that the biomass density of forests

affected by disturbance in the west was more

spatially and temporally variable. Eastern and

western forest strata exhibited somewhat opposing

trends in biomass loss, potentially corresponding

to the implementation of the Northwest Forest

Plan in the mid 1990s that resulted in a shift of

timber harvesting from public lands in the

northwest to private lands in the south. Overall,

these observations document modest increases in

disturbance rates and associated carbon conse-

quences over the 18-year period. These changes

are likely not significant enough to weaken a

growing forest carbon sink in the conterminous

U.S. based largely on increased forest growth rates

and biomass densities.

Key words: biomass; carbon; disturbance; Land-

sat; time series; LandTrendr; FIA.

INTRODUCTION

The critical role of forests in the global carbon cycle

is well known, but significant uncertainties remain

about the specific role of disturbance (CCSP 2007;

U.S. EPA 2011). In U.S. forests, a growing carbon
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sink, equivalent in magnitude to over 10% of U.S.

greenhouse gas emissions (Pan and others 2011a;

U.S. EPA 2011), is associated with recovery from

past disturbances (Pan and others 2011a). How-

ever, the fate of this sink is highly uncertain in the

face of continued forest maturation (Pan and others

2011b) and increased rates of forest disturbance

(Kurz and others 2008; Westerling and others

2006; Masek and others 2013). The importance of

forest disturbance to carbon dynamics has been

well-documented for specific disturbance factors

and locations. For example, the on-going mountain

pine beetle epidemic in western Canada is respon-

sible for reversing a net carbon sink in Canadian

forests to a net carbon source, as a cumulative

270 Tg of carbon are estimated to be released by

2020 as a result of forest mortality (Kurz and others

2008). Elsewhere, the singular storm event of

Hurricane Katrina was estimated to cause forest

mortality and the loss of carbon equivalent to 50–

140% of the net annual U.S. carbon sink in forest

trees (Chambers and others 2007). Masek and

others (2006) estimated that in the southeastern

U.S., forest harvest accounts for approximately

25% of interannual variability in net ecosystem

productivity (NEP), with climate accounting for the

remaining variability.

An important element of the uncertainty about

the role of forest disturbance in the carbon cycle is

the challenge of incorporating spatial and temporal

detail in the characterization of disturbance pro-

cesses. In this study, we make significant progress

in that direction.

Two common approaches to characterizing car-

bon flux at broad spatial and temporal scales are

the stock change method and the age structure–

carbon accumulation method. The stock change

method, so-called because biomass stocks are

periodically re-measured at forest inventory plots,

is currently the cornerstone for large area moni-

toring and reporting to the United Nations Frame-

work Convention on Climate Change (U.S. EPA

2011). Periodic re-measurement of biomass stocks

yields estimates of net change, meaning that dis-

turbance processes are only implicitly captured

(Houghton 2005), making it difficult to separate

mortality from growth. Direct attribution of change

to disturbance processes (forest management, land

use, fire, insects, and so on) is challenging (U.S.

Agriculture and Forestry Greenhouse Gas Inven-

tory 1990–2008; U.S. EPA 2011). Moreover, the

stock change method is constrained by the tem-

poral frequency (up to 10 years in the western

U.S.) and spatial distribution of plot samples. Thus,

periodic short-term pulses of forest disturbance, or

changes on marginal forest lands might not be

adequately captured (Houghton 2005; Campbell

and others 2012), despite their dramatic impacts on

the carbon cycle (Chambers and others 2007;

Westerling and others 2006).

The age structure–carbon accumulation method

(Williams and others 2012) relies upon scaled-up

inventory-based estimates of forest-age distribu-

tions to simulate the growth of biomass across a

landscape. In conjunction with a process-based

model, the age structure–carbon accumulation

method can explicitly partition the separate effects

of forest growth and mortality on net carbon

balance (Williams and others 2012). However,

because the spatial locations of disturbance are not

typically known, generalized assumptions about

biomass densities are required to estimate the ef-

fect of disturbance on biomass stocks. Even when

the spatial locations of disturbance are used to

characterize carbon flux, such as a hybrid ap-

proach that uses the age structure–carbon accu-

mulation approach in conjunction with maps of

land-cover change and forest disturbance (Zheng

and others 2011), spatially aggregated biomass

densities derived from inventory data are still used

to estimate the effect of disturbance on biomass

stocks. These spatially generic approaches high-

light the challenges of incorporating detailed dis-

turbance characterization into carbon accounting

and underscore the need for spatially and tem-

porally explicit maps of biomass and biomass

change at the resolution of land management to

better guide carbon accounting and ultimately

policy and management.

Remote sensing approaches can help to reveal

when, where, and by what intensity disturbances

occur, but a direct linkage to forest inventory data

is essential for understanding the impact of distur-

bance on carbon flux. Forest growth and carbon

accumulation after disturbance can be monitored

with remote sensing up to a point but typically

require forest growth modeling. Carbon uptake by

forests is the net difference between disturbance

and regrowth and a more complete accounting of

the relative magnitudes of these processes is critical

for improved understanding of how future distur-

bances and regrowth, and interactions with forest

management and climate change, will impact what

is currently a net carbon sink in North American

forests. In this paper, we link forest inventory data

to remote sensing data to derive estimates of pre-

and post-disturbance biomass, and then use near-

annual remote sensing observations of forest dis-

turbance to characterize biomass loss associated

with disturbance.
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What our approach highlights is the need for the

continued development of a national-scale carbon

monitoring system (for example, NASA Carbon

Monitoring System: http://carbon.nasa.gov/),

which would include spatially comprehensive and

ongoing disturbance detection. Ideally, this system

will be tied to the annual forest inventory data

system as well as models that combine growth

simulators and other available data (including li-

dar) to explicitly partition growth and disturbance

effects. In this paper, we focus on steps toward

development of the part of a national-scale system

that includes a linkage between disturbance map-

ping and forest inventory data.

Remote sensing approaches can provide spatially

and temporally explicit maps of disturbance

dynamics (Huang and others 2010; Kennedy and

others 2012), but not all datasets or analyses are

sufficient. Previous studies have also successfully

mapped biomass stocks at broad scales with passive

optical remote sensing imagery (Kellndorfer and

others 2004; Blackard and others 2008), active re-

mote sensing imagery (Lefsky and others 2005;

Toan and others 2004), and fusion approaches

involving both passive and active imagery (Saatchi

and others 2007; Kellndorfer and others 2010).

However, these approaches typically lack the his-

torical view required to estimate decadal scale

biomass flux (for example, Cohen and others

1996). Archived AVHRR data have been used to

estimate biomass flux since the early 1980s (Myn-

eni and others 2001), but the course spatial reso-

lution of these data do not adequately capture

changes in biomass stocks attributable to forest

management or disturbance (Coops and others

2009).

Here, we employ Landsat satellite data, which

are unique in that they are capable of mapping

both disturbance and biomass stocks with nearly

40 years of archived observations at the scale of

land management (Cohen and Goward 2004;

Powell and others 2010). We report on the results

of sample-based observation of aboveground bio-

mass loss in forests as a result of disturbance across

the conterminous U.S. between 1986 and 2004.

Biomass loss in the context of our study is a generic

concept, including both natural and anthropogenic

disturbances, and does not strictly equate to carbon

flux as the eventual fate of the live aboveground

biomass that is lost is unknown (for example, it

might be removed from a site following harvesting

or it might be left on site to decompose following a

fire). Landsat remote sensing-based estimates of

disturbance rates and associated biomass conse-

quences affords a consistent and synoptic assess-

ment of the trends and relative importance of

disturbance to the forest carbon sink.

This study combines two components of the

North American Forest Dynamics (NAFD) project

(Goward and others 2008; Masek and others 2013).

In the initial objective, dense time series of Landsat

imagery were assembled for 50 sample scenes

across North America to estimate rates of forest

disturbance (Masek and others 2013). Subse-

quently, we developed methods to translate the

time series of spectral imagery into biomass with

empirical models based on U.S.D.A. Forest Service

Forest Inventory and Analysis (FIA) field mea-

surements of aboveground biomass (Powell and

others 2010). In this paper, we combine the bio-

mass maps with biennial maps of forest disturbance

based on sample scenes across the conterminous

U.S. (Huang and others 2010; Masek and others

2013), which are the basis for sample-based esti-

mation of forest biomass loss as a result of distur-

bance in eastern and western U.S. strata. Current

research efforts are underway to operationalize the

wall-to-wall coverage of Landsat time series across

the conterminous U.S. for disturbance quantifica-

tion.

Our approach employs two strategies to improve

estimation of forest biomass from the relationships

between optical remote sensing and inventory

data. First, we use a pixel-level curve-fitting ap-

proach to time series of biomass estimates to reduce

noise and improve predictions of biomass stocks

and fluxes (Kennedy and others 2010; Powell and

others 2010). Second, we focus the predictions of

biomass change only on disturbed areas of the

landscape, which captures the most dynamic loss

and gain periods in the biomass cycle, maximizing

the signal-to-noise ratio. Despite the known limi-

tations of optical remote sensing of biomass, the

spatial and temporal resolutions of the nearly

40 years of archived Landsat imagery enable con-

sistent, repeatable measurement of biomass flux

across large areas, long time-frames, and at the

appropriate resolution of land management and

disturbance (Cohen and Goward 2004). Overall,

this approach has the potential to serve as an

empirical check on other estimates of national-le-

vel biomass loss as a result of disturbance.

The overall goal of this study is to derive empir-

ical estimates of the rates of biomass loss as a result

of disturbance in the conterminous U.S. for the

period 1986–2004. The specific objectives are to:

1) Assess geographic and temporal trends in bio-

mass loss as a result of disturbance.

2) Compare estimates of biomass loss among

Biomass Trends as a Result of Disturbance
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studies to better understand the strengths and

weaknesses of various carbon accounting ap-

proaches.

3) Evaluate trends in biomass loss in the context of

a large and growing forest carbon sink in the

U.S.

METHODS

Empirical Biomass Modeling with Forest
Inventory and Analysis Plots

The methodological basis for biomass estimation

was developed on two Landsat scenes (Powell and

others 2010). In this paper, we extend those

established methods to a sample (explained below)

of 50 Landsat scenes across the conterminous U.S.

(Figure 1). For each of the 50 sample scenes, we

developed an empirical regression tree model of

live, aboveground biomass based on spectral

reflectance, and biophysical variables. The biomass

reference data were derived from FIA tree-level

observations of tree species and diameter-at-breast-

height (DBH). We converted these observations to

live, aboveground biomass using the Jenkins

equations, which are a national-scale set of ten

DBH-based biomass allometric equations developed

through a meta-analysis of published equations

(Jenkins and others 2003). Tree-level biomass

observations were aggregated to the plot level using

the tree expansion factor, and only homogenous

‘‘single-condition’’ forested plots were used to de-

velop empirical biomass models. For each plot

location, we extracted a suite of spectral and

ancillary data to be used as inputs to the empirical

model. From temporally coincident Landsat sur-

face-reflectance imagery, we extracted native

spectral bands and several derived spectral indices

including the tasseled cap indices brightness,

greenness, wetness, angle, and distance (Powell

and others 2010), and the Normalized Difference

Vegetation Index (NDVI). From other spatial data

layers, we extracted elevation, slope, potential rel-

ative solar radiation, temperature, precipitation,

growing degree days, water vapor pressure, and

shortwave radiation. The empirical models were

developed using RandomForest regression tree

models (Breiman 2001), a non-parametric ensem-

ble classifier that includes an internal error assess-

ment. RandomForest models and maps were

developed in the R package ModelMap (Freeman

2009). Each individual biomass model was assessed

in terms of the root-mean-square-error (RMSE)

and bias between observed and predicted biomass.

We calculated RMSE as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ŷi � yið Þ2
s

;

where (ŷi) was the predicted biomass on the ith

plot, and (yi) the observed biomass on the ith plot.

Bias was calculated as the difference between the

Figure 1. NAFD sample

scenes across the

conterminous U.S. Each

sample is a Landsat scene

Voronni polygon labeled

with the path/row.

Samples are overlaid on a

map of forest types

developed by the USDA

Forest Service (http://

fsgeodata.fs.fed.us/

rastergateway/forest_

type/).
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mean-predicted ð�̂yÞ and the mean-observed ð�yÞ
biomass:

Bias ¼ �̂y� �y:

Independent Corroboration

In addition to internal model error assessment, we

compared approximately one-half of the predicted

maps of biomass (23 phase 1 samples) against three

independent data sets: The National Biomass Car-

bon Dataset (NBCD2000) (Kellndorfer and others

2004), The FIA National Biomass Map (Blackard

and others 2008), and FIA inventory-based esti-

mates based on plot data alone. For each of the

comparisons, we calculated the RMSE and bias of

the scene-level mean biomass predictions based on

a large sample of FIA plot locations.

Landsat Time Series Stacks

Each of the 50 sample scenes consisted of a Landsat

time series stack (LTSS) of near-annual imagery

(Masek and others 2013). Each LTSS was devel-

oped using the highest quality, least cloudy images

acquired as close to the peak growing season

anniversary dates as possible to minimize the ef-

fects of exogenous factors such as vegetation phe-

nology and sun-angle differences (Huang and

others 2009). The raw images were geometrically

corrected to achieve subpixel geolocation accuracy

(that is, within 28.5 m) using the Automated

Registration and Orthorectification Package

(AROP) (Gao and others 2009) and radiometrically

calibrated to surface reflectance using a MODIS-

like 6S-based atmospheric correction algorithm

implemented as part of the Landsat Ecosystem

Disturbance Adaptive Processing System (LEDAPS)

(Masek and others 2006). Each image was then

radiometrically normalized to a common reference

image using the Multivariate Alteration Detection

(MAD) method (Canty and others 2004; Schroeder

and others 2006) to further minimize unimportant

temporal spectral variability. Then, the empirical

biomass models were temporally applied to their

respective radiometrically normalized LTSS to ob-

tain biomass time series between 1986 and 2004

(Healey and others 2006).

LandTrendr Smoothing

After temporal prediction we employed a pixel-le-

vel smoothing algorithm to each biomass time

series to minimize errors associated with year-to-

year variability in spectral reflectance due to

exogenous factors. We modified the LandTrendr

algorithm (Kennedy and others 2010) specifically

for this purpose to smooth the Landsat biomass

trajectories. LandTrendr in this context operates by

identifying a potential set of vertices that represent

the biomass trajectory and then selecting the model

that balances minimization of residual error with

increased complexity.

Disturbance Maps

To isolate only the biomass lost through distur-

bance, each of the biomass time series stacks was

intersected with a map of forest disturbance derived

from the Vegetation Change Tracker (VCT) algo-

rithm applied to the same LTSS (Huang and others

2010). The VCT operates by quantifying changes in

the disturbance-related direction of a spectral index

for pixels identified as forested and labeling the

year of change as year-of-disturbance. Independent

validation of VCT maps across several of the sample

scenes indicated accuracy of over 92% for change

versus no-change (Thomas and others 2011). We

opted to use these disturbance maps to estimate

disturbance rates to ensure consistency with NAFD

estimates of rates of forest disturbance across the

conterminous U.S. (Masek and others 2013). Bio-

mass loss (that is, max biomass–min biomass) was

quantified only for pixels labeled as disturbed by

VCT (Figure 2).

National-Level Estimation

We estimated the national-level and stratum-level

(eastern and western U.S.) rates of biomass loss

based on the sampling and estimation framework

used to quantify rates of forest disturbance (Masek

and others 2013). According to this framework, the

samples for the two strata were selected based on

an unequal probability of selection that targeted

geographic scene dispersion, forest type diversity,

total forest area, and inclusion of some fixed

scenes. Biomass loss as a result of disturbance

within each stratum was estimated using the gen-

eralized Horvitz–Thompson estimator, which ac-

counts for the unequal-probability of sample

selection by weighting the responses according to

probability (Horvitz and Thompson 1952). Biomass

estimates were converted to carbon estimates based

on the assumption that carbon content equaled

50% of biomass (Smith and others 2003). In this

context, biomass loss estimates do not equate di-

rectly to CO2 emissions, as the immediate fate of

the lost biomass is unknown.

Biomass Trends as a Result of Disturbance
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RESULTS

Empirical Biomass Models

Across the 50 empirical biomass models, RMSEs

ranged from a low of 22 Mg/ha of biomass to a high

of 221 Mg/ha of biomass (Table 1), with a mean of

80 Mg/ha of biomass. Relative to the range of ob-

served biomass (max–min) within each of the

sample scenes, RMSEs ranged from 9 to 25%

(Figure 3). The average bias across all 50 scenes

was 1.77 Mg/ha of biomass, ranging from a low of

0.02 Mg/ha to a high of 9.8 Mg/ha (Table 1). Only

four scenes had a slight negative bias, indicating

under-prediction relative to the mean observed

biomass.

Comparison to Other Biomass Maps

Comparison of predicted Landsat scene-level bio-

mass to three independent sources yielded favorable

results, with mean scene-level biomass RMSEs

ranging from 27 to 35 Mg/ha (Figure 4). Our scene-

level biomass predictions were generally higher than

the FIA plot-based biomass estimates (bias = 21 Mg/

ha), especially for one significant outlier (central

Oregon p45/r29). Likewise, our predicted biomass

was generally higher than the FIA National Biomass

Map estimates (bias = 24 Mg/ha). Compared to the

NBCD2000 biomass map, predictions were more

evenly distributed around the 1:1 line (bias =

1 Mg/ha).

Biomass Loss Estimates

Nationally, year-to-year variability in the amount of

aboveground carbon lost as a result of disturbance

ranged from a low of 61 Tg C (±16) in 1991 to a high

of 84 Tg C (±33) in 2003 (Table 2; Figure 5). Eastern

and western forest strata were relatively balanced in

terms of their proportional contribution to national-

level trends, despite eastern forests (181 million ha)

having more than twice the area of western forests

(73 million ha). On average, disturbance in eastern

forests led to a loss of 0.19 Mg C per ha y-1 whereas

in western forests the rate was 0.53 Mg C per ha y-1.

Extrapolated across the area of forest in each stra-

tum, eastern forests lost an average of 35 Tg C y-1

(±5) via disturbance and western forests lost an

average of 39 Tg C y-1 (±14) for a national-level

average annual total of 74 Tg C y-1 (±19) between

1986 and 2004.

Regional Trends

In the eastern forest stratum, annual biomass

loss tracks closely (inversely) with the area of

Figure 2. Example of

clear cuts in a forested

landscape in southern

Oregon (sample scene 46/

30). Comparison of raw

Landsat imagery (top

panel), VCT disturbance

map (bottom left panel),

and biomass loss as a

result of disturbance map

(bottom right panel).
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Table 1. Empirical Biomass Model Results for Each Sample Scene

Path/row Mean biomass

(Mg/ha)

Range biomass

(Mg/ha)

SD biomass

(Mg/ha)

Number

of plots

RMSE

(Mg/ha)

RMSE %

of range

Bias

(Mg/ha)

Eastern forest stratum—north samples

12/27 119 352 57 226 46 13 1.16

12/31 163 310 58 85 53 17 0.58

14/31 165 356 66 441 63 18 0.72

15/31 152 348 63 481 60 17 0.76

17/31 157 399 78 381 70 18 1.16

20/33 141 447 70 232 61 14 0.35

21/30 124 447 70 440 63 14 1.53

22/28 115 336 67 1,034 54 16 0.76

23/28 117 390 68 1,294 60 15 0.69

25/29 101 387 66 675 54 14 0.66

27/27 64 230 46 978 39 17 1.80

Eastern forest stratum—south samples

16/35 123 376 79 186 64 17 2.51

16/36 94 362 75 227 63 17 1.12

16/41 88 365 89 71 72 20 2.94

18/35 176 528 87 352 85 16 2.36

19/36 150 479 79 354 64 13 1.20

19/39 85 478 84 217 69 14 0.35

21/37 91 370 66 442 58 16 1.03

21/39 88 404 71 209 62 15 2.18

23/35 136 416 78 128 73 18 2.40

24/37 97 434 67 578 55 13 0.60

26/34 116 311 63 131 58 19 1.31

26/36 120 913 90 585 86 9 1.10

26/37 85 324 62 196 55 17 1.49

27/38 50 223 41 72 36 16 -0.27

Western forest stratum—interior west samples

33/30 68 194 42 142 33 17 0.02

34/34 142 467 95 69 73 16 3.07

34/37 53 211 47 41 33 16 -0.95

35/32 93 249 62 96 51 20 1.08

35/34 98 294 70 133 51 17 0.78

36/37 36 230 38 81 31 13 -1.25

37/32 89 283 59 235 48 17 -0.05

37/34 72 384 56 174 39 10 0.43

41/29 122 438 84 139 73 17 1.65

41/32 50 87 21 22 22 25 2.12

42/28 138 589 104 112 86 15 3.45

42/29 143 436 92 77 83 19 2.17

Western forest stratum—Pacific samples

40/37 175 722 164 62 94 13 0.10

42/35 188 720 170 52 93 13 1.88

43/33 224 1,051 156 272 140 13 4.48

44/26 118 326 75 123 49 15 1.32

44/29 68 278 61 209 44 16 1.15

45/29 221 1,128 228 258 173 15 1.68

45/30 222 1,437 222 322 165 11 7.24

46/30 286 1,436 232 276 191 13 9.80

46/31 286 2,100 236 224 203 10 4.11

46/32 318 1,064 206 101 163 15 3.13

47/27 317 1,132 280 144 221 20 8.66

47/28 229 791 136 114 120 15 1.82

48/27 393 1,123 272 57 212 19 0.35

Biomass Trends as a Result of Disturbance
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disturbance (Figure 6), suggesting a relative con-

sistency of biomass density affected by distur-

bances, which in the eastern stratum are largely

harvest. In contrast, in the western forest stratum,

annual biomass loss shows more year-to-year var-

iability that does not directly correspond to the area

of disturbance, particularly in the post-2000 era

(Figure 7). This pattern suggests that the biomass

density of forests affected by disturbance in the

west is more spatially and temporally variable.

We examined the sample-level trends in biomass

loss by region (East-North; East-South; Interior

West; Pacific Coast) to better understand the re-

gional drivers of the stratum and national-level

trends (Figure 8). The 12 samples from the East-

North showed little temporal variability in biomass

loss between 1986 and 2004 and low overall

magnitude of biomass loss as a result of distur-

bance. The 12 samples from the Interior West

similarly showed low magnitude of biomass loss as

a result of disturbance, but in contrast, exhibited

two pronounced pulses of increased biomass loss in

the mid-1990s and then again in the early 2000s,

largely related to wildfire events. The 13 East-South

Figure 3. Empirical biomass model results for each Landsat sample scene. RMSE is depicted as the percent of biomass

range for each sample scene.

Figure 4. Comparison of biomass predictions to three independent data sources. Each point on the scatter plots represents

a Landsat scene-level mean biomass for forested pixels. The 1:1 line is shown for reference.
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samples and the 13 Pacific Coast samples exhibited

contrasting trends in biomass loss between 1986 and

2004. When the Pacific Coast samples exhibited a

pronounced decrease in biomass loss throughout the

1990s, the East-South samples exhibited an increase

in biomass loss.

DISCUSSION

Spatially and temporally explicit characterization

of the carbon consequences of disturbance is

critical for accurate assessment of continental-scale

carbon flux. Combining maps of disturbance with

Table 2. Annual Estimates of Disturbance Area and Carbon Loss for Eastern and Western Strata and Na-
tional-Level Totals

Year Eastern

disturb. (ha)

Western

disturb. (ha)

Total

disturb. (ha)

Eastern C

loss (Tg)

Western C

loss (Tg)

Total C

loss (Tg)

Total C

loss SD (Tg)

1986 2,054,607 747,845 2,802,452 -30.8 -46.1 -76.9 24.3

1987 2,002,407 749,092 2,751,499 -31.1 -48.2 -79.3 24.7

1988 1,976,914 693,338 2,670,252 -31.1 -45.8 -76.9 22.3

1989 1,784,872 782,282 2,567,154 -30.3 -48.5 -78.8 19.8

1990 1,775,558 732,939 2,508,497 -29.2 -40.4 -69.6 15.7

1991 1,507,971 605,920 2,113,891 -26.5 -34.1 -60.7 15.7

1992 1,420,998 580,834 2,001,832 -30.5 -32.9 -63.3 14.0

1993 1,640,051 596,500 2,236,551 -32.4 -34.8 -67.2 14.9

1994 1,756,816 671,616 2,428,432 -34.8 -35.3 -70.2 17.9

1995 2,039,400 664,180 2,703,580 -39.3 -30.7 -70.0 13.7

1996 2,047,277 690,339 2,737,616 -41.4 -30.6 -72.0 15.1

1997 2,544,924 661,391 3,206,315 -44.3 -31.5 -75.8 16.6

1998 2,635,857 699,600 3,335,457 -43.9 -32.3 -76.3 17.8

1999 2,555,053 825,432 3,380,485 -43.0 -35.7 -78.7 19.0

2000 2,428,127 1,154,255 3,582,382 -41.8 -38.2 -80.0 18.8

2001 1,921,612 1,031,874 2,953,485 -37.6 -36.2 -73.8 18.1

2002 1,775,816 1,052,628 2,828,444 -36.1 -46.1 -82.2 22.3

2003 1,824,255 873,836 2,698,091 -33.5 -50.6 -84.2 32.5

2004 1,971,248 862,277 2,833,525 -34.3 -40.9 -75.2 22.6

Figure 5. National and

stratum-level estimates of

aboveground carbon loss

as a result of disturbance

between 1986 and 2004.

National-level estimate is

shown with 1 SD bounds.
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estimates of biomass loss demonstrates the

importance of quantifying the geographic vari-

ability of biomass density with respect to distur-

bance. Although quantifying biomass loss as a

result of disturbance is not strictly equivalent to

quantifying carbon flux, it is an important pre-

cursor to being able to quantify how carbon is

ultimately redistributed among carbon storage

Figure 6. Eastern forest

stratum trends in

disturbance area and

carbon loss (±1 SD)

between 1986 and 2004.

Figure 7. Western forest

stratum trends in

disturbance area and

carbon loss (±1 SD)

between 1986 and 2004.
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pools and the atmosphere. This critical baseline

information is only one part of the overall carbon

budget, but a difficult one to estimate by con-

ventional methods (for example, inventory-based

approaches). Inventory-based approaches do not

explicitly account for disturbance; rather repeat

measurements of field plots implicitly include both

growth and mortality. As a result, the inventory-

based approach alone makes it difficult to address

one of the key uncertainties of what drives the

magnitude and fate of the carbon sink (Masek and

Healey 2013). Is the estimated growth in the

North American carbon sink a result of increased

forest growth or reduced disturbance?

Optical remote sensing-based methods for carbon

accounting, like inventory-based approaches, can-

not by themselves be relied upon to estimate all of

the key elements of the carbon budget. However,

spatially and temporally detailed mapping of dis-

turbance is a noted strength of the Landsat data

archive (Huang and others 2010; Kennedy and

others 2010; Masek and others 2013), and coupled

with empirical estimates of biomass loss provides

needed insight into this critical part of the carbon

cycle. Other studies have demonstrated that at the

regional scale, Landsat-based estimates of harvest

volume correspond well with Timber Products

Output (TPO) harvest records (Healey and others

2009).

Spatial and Temporal Trends in Biomass
Loss

We document a nearly 20-year trend in biomass

loss as a result of forest disturbance across the

conterminous U.S., including harvest, fire, hurri-

cane, land-cover conversion, and numerous other

disturbance processes. Each of these disturbance

types leaves a unique imprint on the carbon cycle,

though we make no attempt here at disturbance

attribution. We do observe, however, a stronger

coherence between trends in biomass loss and

disturbance area in eastern forests versus western

forests, potentially highlighting key differences in

stand age heterogeneity and disturbance impacts

(for example, even-aged harvest in eastern forests

versus mix-aged disturbances such as insect out-

breaks and fire in western forests). Other more

formal research into disturbance attribution is

ongoing (Stewart and others 2009; Schroeder and

others 2011). The general trend in the latter half of

the time series is of increasing biomass loss (Fig-

ure 5), driven in large part by the observation of

increasing disturbance over this time period (Masek

and others 2013). Eastern and western forest strata

exhibit somewhat opposing trends in biomass loss—

as the western stratum declines in the mid-portion

of the time series, the eastern stratum increases

(Figures 6, 7). The timing of these opposing trends

Figure 8. Sample-scene

trends in biomass loss as a

result of disturbance by

major region.
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corresponds to the implementation of the North-

west Forest Plan in the Pacific Northwest in the mid

1990s that resulted in a shift of timber harvesting

from public lands in the northwest to private lands

in the south (Smith and others 2009; Healey and

others 2008). The trend of decreasing biomass loss

in the western forest stratum is largely driven by

the Pacific samples, which on a per-sample scene

basis contribute significantly more to biomass loss

than the interior west samples (P = 0.002) (Fig-

ure 8). This trend is consistent with the fact that

forest carbon stocks are highest in the Pacific states,

lowest in the Great Plains, and intermediate in the

Rocky Mountains and eastern states (U.S. Agri-

culture and Forestry Greenhouse Gas Inventory

1990–2008). The increase in biomass loss for the

western stratum near the end of the time series is

likely associated with notable wildfire events in

both interior west and Pacific samples. The eastern

stratum trends are driven almost entirely by the

southern samples. The northern samples show little

year-to-year variability in biomass loss and con-

tribute little to the overall magnitude of biomass

loss for the eastern stratum.

Comparison of Estimates of Biomass Loss
Among Studies

A number of other studies have estimated distur-

bance and biomass loss using a variety of approaches.

The 2011 EPA Greenhouse Gas Inventory (U.S. EPA

2011) estimated a range of biomass loss as a result of

disturbance (harvest and fire only) of 146–

202 Tg C y-1 between 1990 and 2004. Domestic

harvests ranged from 125 to 144 Tg C y-1 and fire

(wild and prescribed) ranged from 11 to 67 Tg C y-1.

For the purposes of comparison, we plotted our

estimates of biomass loss against the EPA estimates

for the time period 1990–2004 (Figure 9). Most of

the variability in the EPA disturbance estimates

stems from the year-to-year fluctuations in esti-

mated wildfire emissions. Annual domestic harvest

rates are relatively consistent but declining between

1990 and 2004. The EPA estimate of biomass re-

moved as a result of harvest is based on calculations

of harvested wood product end uses (Skog 2008). For

fire emissions, average biomass densities and com-

bustion factors were applied to the area of forest that

burned in a given year (41 Mg C/ha was estimated

to be emitted by wildfire regardless of forest type,

pre-fire biomass, fire severity, and so on).

Zheng and others (2011) estimated that distur-

bances reduced the forest carbon sink by 36% from

1992 through 2001, compared to that without

disturbances in the contiguous U.S. On an annual

basis, this estimate equated to 233 Tg C y-1 re-

moved as a result of disturbance, over three times

the amount that we report here, though impor-

tantly we only report on live, aboveground tree

carbon pools whereas Zheng and others (2011)

include standing dead, down dead, forest floor, and

soil carbon pools. The methods that they used to

Figure 9. Comparison of

estimate of biomass loss as

a result of disturbance

between 1990 and 2004

against EPA estimates of

biomass flux as a result of

harvest and fire for the

same time period. For

reference, the estimated

net aboveground, live

biomass flux from EPA is

shown. Positive numbers

indicate carbon uptake;

negative numbers indicate

carbon loss.
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quantify carbon consequences of disturbance relied

on a combination of approaches with varying

assumptions about spatial and temporal precision.

Carbon removed as a result of deforestation was

estimated by first calculating the area of defores-

tation using the National Land Cover Database

(NLCD) 1992–2001 Retrofit Change Map and then

multiplying by the mean forest carbon density for a

given county and assuming a carbon loss of 80%

following deforestation. Carbon removed by har-

vest was estimated based on the volume of timber

reported by the FIA as part of the TPO data (USDA

Forest Service 2010). Western harvests were rep-

resented by the average state-level estimate for the

period 1996–2001 and, therefore, lacked temporal

variability. Forest fire carbon losses were calculated

using the Monitoring Trends in Burn Severity

(MTBS) (Eidenshink and others 2007) maps to

estimate burned area, then multiplying this esti-

mate by the average state-level carbon density from

Smith and others (2006) and assuming 20, 40, and

60% carbon emission for low, moderate, and high

severity fire classes, respectively. Burned area

estimates from MTBS were taken as average annual

burned area, and, therefore, as above, lacked tem-

poral variability.

Williams and others (2012) estimated biomass

loss by forest type, region, and productivity class as

a function of the area of forested land assigned a

stand age of one year based on the FIA age histo-

gram, the pre-disturbance aboveground biomass,

and the 80% of the ‘‘killed’’ biomass that was re-

moved via harvest or fire from the site. Across the

conterminous U.S. for the year 2005, they esti-

mated that 117 Tg C y-1 were removed as a result

of harvest (107 Tg C y-1) and fire (10 Tg C y-1).

Wildfire emissions were based on the Global Fire

Emissions Database V3 (GFED3) (van der Werf and

others 2010).

What these carbon accounting approaches

highlight is the uncertainty regarding the spatial

and temporal characterization of biomass change

with respect to disturbance. The assumption that

disturbances impact forests with spatially averaged

biomass densities can lead to gross under- or over-

estimation of biomass loss if disturbances are in fact

taking place in areas that diverge from ‘‘average’’

conditions (Houghton and others 2009).

Study Limitations and Potential Sources
of Error

Our empirical remote sensing-based estimates of

biomass loss as a result of disturbance are lower

than the other reported studies. Importantly,

however, our estimates afford a spatially and tem-

porally explicit characterization with a consistent

and synoptic method. We do recognize the many

potential sources of error that affect our estimates

of biomass loss as a result of disturbance, many of

which likely result in under-estimation. The major

sources of error include sampling error and errors

associated with Landsat data and empirical model-

ing (including model bias). The sampling error is

explicitly accounted for in terms of standard devi-

ations around the estimates of biomass loss. The

Landsat and empirical modeling errors, on the

other hand, are not explicitly accounted for here.

We will describe these individual sources of error

and how each would likely affect the estimates of

biomass loss.

Disturbance Map

The VCT-derived disturbance map underwent rig-

orous independent validation for six sample scenes,

enabling an approximation of overall map error

(Thomas and others 2011). Our approach to esti-

mate biomass loss did not hinge upon the accuracy

of the disturbance map’s year-of-disturbance, but

rather was premised on the accuracy of disturbed

versus non-disturbed. Even so, the disturbance

maps under-estimated the amount of disturbance,

and therefore biomass loss, in five out of six vali-

dation scenes. Map bias was calculated as the dif-

ference between the proportion of reference

disturbance and map disturbance. Overall, across

the six scenes, the average bias was -6.4% (-7.7%

in the east and -4.0 in the west). Disturbance map

commission errors (false negatives) also likely re-

sulted in under-estimation of biomass loss because

we calculated the mean biomass loss across all

pixels that were labeled as disturbance in a given

year by VCT.

Biomass Modeling

A number of sources of error revolve around

empirical biomass modeling. The limitations of

optical remote sensing of biomass are well under-

stood. In closed canopy forests especially, optical

remote sensing data saturate at high levels of bio-

mass. Furthermore, RandomForest regression tree

models tend toward over-prediction in low biomass

forests and under-prediction in high biomass for-

ests (Powell and others 2010). Therefore, our esti-

mates of biomass loss are likely deflated because of

errors at both ends of the spectrum. In addition,

with respect to biomass modeling, our estimates

only account specifically for live, aboveground

biomass pools. We do not make any attempt to

Biomass Trends as a Result of Disturbance
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address the other biomass pools, including dead

(standing and coarse woody debris), belowground,

non-tree biomass (for example, grasses and

shrubs), or soil carbon.

Biomass Allometry

Error associated with biomass allometry is another

potential source of error. Here, we used the Jenkins

allometric equations based solely on DBH for the

purposes of national-level consistency. A recent

comparison of biomass allometric approaches

found that the Jenkins method overestimated car-

bon stocks by an average of 16% for 20 tree species

compared to an approach that incorporated tree

height into species-specific tree volume models

(Domke and others 2012).

Additional Sources

Finally, a variety of challenges of empirical mod-

eling with plot data add additional sources of

uncertainty and error, though their overall effects

on biomass loss estimates are unknown. Chief

among them is the potential that geo-locational

inaccuracies between the plot data and the satellite

imagery cloud the empirical relationships between

biomass and spectral data. In addition, although we

attempted to minimize the various sources of error

that can affect Landsat time series analyses, it is

inevitable that there were residual effects of exog-

enous factors such as sun angle differences, phe-

nological differences, and atmospheric differences.

Trends in Biomass Loss in the Context of
the U.S. Forest Carbon Sink

How do we reconcile our estimates of increasing

rates of forest disturbance and biomass loss with a

significant and growing forest carbon sink? Pan and

others (2011a) estimated that the magnitude of the

U.S. forest carbon sink increased from 179 Tg C y-1

between 1990 and 1999 to 239 Tg C y-1 between

2000 and 2007 with large increases in biomass and

soil carbon pools. One explanation for this pattern

is that despite increasing rates of forest disturbance,

a relatively small percentage (�1%) of contermi-

nous U.S. forests is disturbed annually (Masek and

others 2013), and hence the associated carbon

consequences are relatively minor. For example,

the 2003 EPA estimate of total live aboveground

forest biomass stocks was 16,295 Tg C (U.S. EPA

2011). In that same year, our study estimated that

84 Tg C were lost as a result of disturbance,

equating to just over 0.5% of live aboveground

forest biomass stocks. Acknowledging that we are

likely underestimating the amount of biomass lost

as a result of disturbance, the relative consistency

of these results suggest that disturbance factors

alone are unlikely to significantly weaken a grow-

ing forest carbon sink. Another explanation for this

pattern is that the area of forest land is increasing,

albeit slowly (U.S. EPA 2011). A third explanation

is that current forest management practices com-

bined with prior land-use changes are resulting in

increased forest growth rates, and hence carbon

uptake and higher biomass density (U.S. EPA

2011). This interpretation is consistent with the

recent increase in aboveground live biomass flux

documented by the EPA (U.S. EPA 2011) (Fig-

ure 9). Despite increases in forest mortality, in the

Rocky Mountain region in particular, net annual

growth of U.S. forests is increasing (Smith and

others 2009), with southern forests being a major

contributor. Eastern forests contain larger carbon

stores than western forests but western forests are

sequestering carbon at a higher rate than eastern

forests on a per-hectare basis (U.S. Agriculture and

Forestry Greenhouse Gas Inventory 1990–2008).

The overall balance between net growth and loss

suggests a mechanism for a growing carbon sink.

Growing stock removals across the U.S. have been

relatively stable the past several decades whereas

net growth has continued to increase (Smith and

others 2009). The stability (and even recent de-

cline) in timber harvests masks a highly variable

and potentially growing rate of non-harvest dis-

turbance (Goward and others 2008; Westerling and

others 2006; Masek and others 2013). Overall, our

data suggest that modest increases in disturbance

rates and associated carbon consequences over the

18 year period of the study are not significant en-

ough to weaken a growing forest carbon sink in the

conterminous U.S. based largely on increased forest

growth rates and biomass densities.
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