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E C O L O G Y

Precipitation and temperature drive continental-scale 
patterns in stream invertebrate production
C. J. Patrick1*, D. J. McGarvey2, J. H. Larson3, W. F. Cross4, D. C. Allen5, A. C. Benke6,  
T. Brey7, A. D. Huryn6, J. Jones8, C. A. Murphy9, C. Ruffing10, P. Saffarinia11, 
M. R. Whiles12, J. B. Wallace13, G. Woodward14

Secondary production, the growth of new heterotrophic biomass, is a key process in aquatic and terrestrial eco-
systems that has been carefully measured in many flowing water ecosystems. We combine structural equation 
modeling with the first worldwide dataset on annual secondary production of stream invertebrate communities 
to reveal core pathways linking air temperature and precipitation to secondary production. In the United States, 
where the most extensive set of secondary production estimates and covariate data were available, we show that 
precipitation-mediated, low–stream flow events have a strong negative effect on secondary production. At larger 
scales (United States, Europe, Central America, and Pacific), we demonstrate the significance of a positive two-
step pathway from air to water temperature to increasing secondary production. Our results provide insights into 
the potential effects of climate change on secondary production and demonstrate a modeling framework that can 
be applied across ecosystems.

INTRODUCTION
Secondary production is the generation of new heterotrophic biomass 
over time. It is a fundamental ecosystem process because it requires 
the consumption of basal energetic sources while sustaining consumers 
at higher trophic levels in both aquatic and terrestrial food webs (1–5). 
Secondary production can be used to assess higher- level responses to 
environmental change (6) and human perturbations (7, 8), including 
ecosystem services such as water filtration (9, 10) and fisheries produc-
tion (11, 12). Understanding how secondary production may respond 
to climate change is therefore essential. Invertebrates are diverse and 
productive members of most food webs and comprise the majority of 
metazoan diversity globally. Previous research has characterized local- 
scale effects of temperature on individual invertebrate taxa (13–15), 
but the potential effects of continental- to global-scale shifts in tem-
perature and precipitation on entire communities of invertebrate sec-
ondary producers are largely unknown (16).

Identifying drivers of annual community secondary production 
(ACSP), defined as the sum of annual production of all invertebrate 
populations within a community (17), is particularly challenging 
because individual- and species-level processes do not always scale 
up to the community level in a direct additive manner. Functional 

redundancy in the roles that species play within a food web can offset 
environmental perturbations via compensatory effects on overall 
production (18). For this reason, ACSP may be a more useful holistic 
indicator of the ecosystem-level effects of climate change than pro-
duction rates of discrete taxa or functional groups. Unfortunately, 
studies of the effects of macroscale shifts in temperature and precipi-
tation on ACSP, which are difficult to conduct in experimental settings, 
are rare [but see (19)].

Previous research in stream and river ecosystems provides a 
unique opportunity to further understand the linkages between ACSP 
and climate. When compared to other types of ecosystems, empirical 
studies of ACSP in streams and rivers are relatively common (20, 21). 
We leveraged this previous work by combining a literature review 
on freshwater ACSP with geospatial analysis, hydrologic modeling, 
and structural equation modeling (SEM) to test hypotheses linking 
air temperature and precipitation to ACSP in lotic ecosystems. Our 
ultimate goal was to build a systems-level framework that can be 
expanded or refined in future research and used to predict climate- 
driven changes in ACSP.

Our study focuses primarily on the effects of air temperature and 
precipitation on ACSP because both factors are closely linked to 
physicochemical conditions in freshwater ecosystems. Air tempera-
ture is a principal driver of water temperature in lotic systems (22), 
and water temperature stimulates in-stream primary production 
(23, 24); this two-step pathway may link air temperature to ACSP 
(25). Precipitation effects on ACSP may be mediated by hydrology, 
which is a key determinant of habitat stability for benthic inverte-
brates that reside on or within streambed substrates. Stable flows 
promote well-sorted substrates that support high invertebrate den-
sities and allow extended growth periods (26, 27). In contrast, systems 
that experience extreme floods and/or droughts tend to have low 
secondary production (7, 28, 29).

We began this study with an extensive literature review of em-
pirical measurements of ACSP in lotic ecosystems and associated 
in situ covariates, such as water temperature and channel substrate 
characteristics. We then used a geographic information system to 
append spatially derived covariates, including land use, elevation, 
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slope, and local climate, to the ACSP data. Many environmental co-
variates were available for study sites within the United States, but 
only climate and elevation data were consistently available for sites 
outside of the United States. New hydrologic variables, such as min-
imum 30-day stream flow (the minimum average discharge that 
persists for 30 consecutive days), were then calculated by using ex-
isting covariates as predictors in statistical models (see Materials 
and Methods) and appended to the covariate data for U.S. sites. By 
combining covariates from multiple sources, we were able to ex-
pand the number of variables and causal pathways that we tested in 
models of ACSP.

Links between climate and ACSP were then tested with a combi-
nation of traditional univariate regression analysis and SEM. The 
latter approach was central to our study because SEMs can be used to 
evaluate cause-and-effect relationships among discrete variables (30), 
can explicitly account for covariation among variables, and can 
simultaneously test systems-level hypotheses that are expressed as 
complex networks of interrelationships among variables (31). Devel-
opment of SEMs of ACSP constitutes a significant advance, relative 
to previous reviews of aquatic secondary production (1, 32), because 
it allows us to evaluate multiple drivers of ACSP within a single inte-
grative framework. In addition, this study demonstrates a novel yet 
general approach to integrate meta-analysis of published results, 
covariate data that were mined from independent sources and ap-
pended to published data, and statistical modeling (univariate re-
gression and SEM) for the purpose of deriving greater insight from 
published information and creating new conceptual understanding 
of connections among suites of environmental and biotic variables.

Before model building and testing, we outlined an a priori hy-
pothesis or “metamodel” (30) of systems-level links between major 
climate variables and ACSP (Fig. 1). Habitat stability and water 
temperature were predicted to be proximal drivers of ACSP. Hy-
drology (28), channel substrate (33), and land cover (34) were pre-
dicted to drive habitat stability. Air temperature (22), canopy shading 
(35), and stream channel size (36) were predicted to influence water 
temperature. Precipitation, latitude, and elevation were predicted to 
act as distal effects on ACSP, mediated through their effects on tem-
perature and riparian vegetation.

Models were tested at two distinct spatial scales. First, we modeled 
ACSP at the continental scale, using only U.S. study sites. This allowed 
us to test complex cause-and-effect relationships using the full suite 
of environmental covariates that was assembled for U.S. sites. Sec-
ond, we developed simpler ACSP models at a larger scale that included 
sites from Europe, Central and South America, and New Zealand. 
These inclusive models were constrained by the smaller number of 
environmental covariates that were available at all study sites, but 
they did allow us to test the generality of some key results from the 
U.S. models.

RESULTS AND DISCUSSION
Among all U.S. samples, ACSP spanned four orders of magnitude 
[35 to 612,231 mg ash-free dry mass (AFDM) m−2 year−1] and was 
strongly positively skewed [median, 9991; coefficient of variation 
(CV), 0.41; see Fig. 2A, inset]. A nearly identical distribution of 
ACSP was observed at the global scale (median, 9982; CV, 0.42; see 
Fig. 2B, inset). In U.S. streams, univariate regression analyses de-
tected significant positive effects of mean annual water temperature, 
basin area, minimum 30-day flow, and percent urban development on 

ACSP (Table 1), consistent with hypothesized links A, B, E, F, and 
H in Fig. 1. A significant negative effect was also detected for percent 
forest cover, as predicted by link C in the metamodel. Of the univar-
iate relationships, water temperature had the strongest overall effect 
on ACSP (standardized effect size  = 0.39).

Nine covariates and 14 path links were retained in the final SEM 
for U.S. streams (Fig. 2A and Table 2). Of these, some paths were 
simple and predictable, such as the strong effect of air temperature 
on water temperature (37), the effects of latitude and elevation on 
air temperature, and the effect of precipitation on minimum 30-day 
discharge. However, other paths were more complex. For instance, 
the total effect of precipitation on water temperature included two 
paths: a direct positive link from precipitation to water tempera-
ture and a negative indirect link that was mediated by forest cover 
(precipitation → forest cover → water temperature; see Fig. 2A). 
This indirect effect of precipitation on water temperature may be 
attributed to wetter regions having comparatively dense forests with 
larger canopies and more extensive shading (38, 39) or enhanced 
evaporation (40).

The U.S. SEM confirmed many of the hypothesized pathways in 
the metamodel (Fig. 1), most notably the direct influence of base 
flow stability and water temperature on ACSP. Significant indirect 
effects of climate (air temperature and precipitation), the physical 
landscape (catchment elevation and basin area), and land cover 
(impervious surface area and forest cover) on ACSP were mediated 
through their direct effects on water temperature and base flow sta-
bility. The final inclusive SEM complimented the U.S. model by 
confirming that air temperature and precipitation have consistent, 
predictable effects on ACSP that are mediated by their direct effects 
on water temperature (Fig. 2B).

The positive effect of water temperature on ACSP in the U.S. and 
global models is perhaps intuitive, but our quantitative results raise 
pressing theoretical questions and can help to reconcile conflicting 
results from previous site-specific studies. The metabolic theory of 
ecology (MTE) predicts that standing stock biomass should de-
crease with increasing temperature, while the production-to-biomass 
(P:B) relationship should increase with temperature, resulting in no 
net change in secondary production (41). Some empirical support 
for this prediction is provided by observational meta-analyses (32) 
and controlled in situ stream warming experiments (16), but other 
studies have documented net positive effects of temperature on body 
size, growth rates, and total production (1, 25). Our results, which 
constitute the most comprehensive meta-analysis to date, indicate 
that the relationship between temperature and ACSP is net positive. 
Given that the MTE assumes constant resource supply, we posit that 
the mechanism responsible for the observed positive relationship 
between water temperature and ACSP may be a temperature-mediated 
increase in basal resources (42). Thus, we suggest that closer exam-
ination of the effect of basal resources on ACSP should be a priority 
area in future research (43–45).

Basal resources are likely to improve systems-level models of 
ACSP because food quality and quantity are already known to be 
fundamental determinants of individual growth (46–48) and of ACSP 
(49) in aquatic ecosystems. For instance, allochthonous leaf litter 
has low nutritional value, relative to autochthonous material, but 
can account for >90% of the annual variation in secondary produc-
tion within temperate streams because it is so abundant (45, 50, 51). 
Allochthonous material was not included in our models because it 
was not measured at most study sites (see data file 2). However, 
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using a subset of U.S. studies that measured both allochthonous 
organic material and ACSP (n = 41), we detected a strong positive 
univariate relationship between coarse particulate organic matter 
(CPOM) and ACSP (r2 = 0.279, P < 0.001). Notably, CPOM accounted 
for more of the variation in ACSP than water temperature and habitat 
stability combined (in the U.S. SEM; see Fig. 2A). We are therefore 
confident that additional information on basal resources and the 
mechanisms that link them to climate (52–55) will enhance our abil-
ity to predict ACSP in changing climates.

Hydrology also stood out as a key regulator of ACSP. Results 
from U.S. streams indicated that discharge magnitude during dry or 
low flow periods (i.e., minimum 30-day flow) has a significant posi-
tive effect ( = 0.24) on ACSP (Fig. 2A and Table 1). While this is 
consistent with previous site-specific findings that environmental 
stability increases in-stream production (56–58), our study is the 
first to demonstrate this relationship at the continental scale. Hy-
drologic stability, as one dimension of environmental stability in 
lotic ecosystems, is known to have a significant effect on secondary 
production (59–62), particularly in drought-prone systems (63). 
However, the effect of hydrology did not extend to measures of 
flooding or “flashiness.” These factors are important to invertebrates 
in some lotic ecosystems (26, 58, 64), but they did not have a signif-
icant effect on ACSP in our analyses. This may be due to variation 

among communities in the response to flashiness, where naturally 
flashy streams are inhabited by organisms with adaptive traits that 
convey resilience (59, 65).

One notable difference between the U.S. and inclusive models 
was a significant positive effect of absolute latitude on ACSP; this 
link between latitude and ACSP, which was independent of a latitu-
dinal effect on temperature, was detected in the inclusive model but 
not in the final U.S. model. The difference may be an artifact of the 
truncated range of latitudes among U.S. streams relative to the global 
range. However, it may also indicate that additional information on 
benthic community structure is needed to understand ACSP at global 
scales. Links between benthic diversity, biomass (66, 67), and sec-
ondary production (68, 69) have been documented in freshwater 
ecosystems, and benthic invertebrate diversity is known to vary with 
latitude (70, 71). Incorporating new dimensions of community struc-
ture, such as diversity and standing stock biomass, may therefore 
help to explain the effect of latitude on ACSP.

Moving forward, an obvious goal should be to increase the ex-
plained variation in ACSP. Coefficients of determination for ACSP 
were <0.25 in both the U.S. and global SEMs (Fig. 2)—a strong 
indication that some key variables were not included in the models. 
Here, our goal was to advance conceptual understanding of the systems- 
level drivers of ACSP by identifying causal pathways that link climate 
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to ACSP; we did not seek to maximize explained variation in ACSP 
per se. The SEM allowed us to test the hypothesized linkages among 
variables (Fig. 1) in a critical and explicit way. Nevertheless, future 
progress will benefit from the addition and testing of new covari-
ates and links between climate and ACSP.

Basal resource availability was previously noted as a priority re-
search topic. Another focus area should be the role of anthropogenic 
stressors on ACSP. Previous research has reported a positive re-
lationship between some land-use activities and ACSP that covaries 
with watershed area (72). Consistent with this earlier finding, 
we detected a positive relationship between watershed area and 
ACSP. However, when impervious surface area and agricultural 
land use were added to preliminary SEMs, we were unable to detect 
a significant influence of either variable on ACSP. The apparent 
lack of a strong land-use effect on ACSP may be a sampling artifact, as 
many of the study sites were located at field stations where human 
impacts were likely minimal. For example, 64% of all streams in the 
U.S. database were entirely unaffected by row-crop agriculture and 
only 7% of the U.S. streams flowed through watersheds, where row-
crop agriculture accounted for >10% of internal land use. Thus, the 
current ACSP database may be ill suited to evaluate land-use effects, 
leaving a key information gap to be filled.

Despite the limitations of the ACSP models, our results have clear 
implications for ecosystem function in the face of climate change. 
Climate models predict that over the next century, average air tem-
peratures will continue to rise (73) and precipitation patterns will 
shift markedly (74, 75). Our models suggest that these changes will 

have cascading effects on ACSP mediated through water tem-
perature and discharge during dry periods. For instance, the SEMs 
predict that warming temperatures will tend to increase ACSP. How-
ever, the frequency and severity of low flow events are expected 
to increase in many ecosystems as subhumid regions transition 
to semiarid climates (75–77). If these systems are populated by in-
vertebrates that lack physiological or life history traits that allow 
them to persist under drought conditions, temperature-driven increases 
in ACSP are likely to be offset by increased mortality or diminished 
recruitment.

In conclusion, we suggest that four key areas of research should 
now be pursued to advance understanding of ACSP. First, new ACSP 
data from undersampled regions are needed to determine whether 
the results presented here are applicable in other parts of the globe. 
Second, a better understanding of the roles that basal resources or 
other bottom-up trophic constraints play in regulating ACSP and 
how these basal factors are affected by climate is needed. Third, the 
effects of anthropogenic stressors should be incorporated in systems- 
level models. Fourth, the general ACSP results should be tested using 
habitat-specific production estimates (3, 60, 62), paying special 
attention to account for differential effects on specific invertebrate 
traits or functional groups (78, 79). Addressing each of these needs 
will be a challenging and labor-intensive process, but we have shown 
that an enhanced understanding of the complex mechanisms that 
drive ACSP at continental to global scales is achievable when the 
efforts and data of many ecologists are integrated within an appro-
priate modeling framework.

Table 1. Comparison of effect sizes in univariate regression models of ACSP in U.S. streams. Unstandardized regression slopes (b) and standardized slopes 
() are each reported with 95% confidence intervals (shown in parentheses) as well as sample sizes (n) and coefficients of determination (r2). Covariates shown in 
bold text have slopes (95% confidence intervals) that exclude zero and are therefore considered statistically significant. 

Hypothesized effect Covariate n b  r2

Temperature Mean annual air 
temperature 128 1.32 (−0.11 to 2.75) 0.16 (−0.01 to 0.34) 0.02

Mean annual water 
temperature 107 1.32 (0.74 to 1.90) 0.39 (0.22 to 0.57) 0.15

Canopy shading % Forest cover in 
catchment 128 −0.56 (−1.06 to −0.06) −0.19 (−0.37 to −0.02) 0.03

Stream size Basin area 128 0.10 (0.02 to 0.19) 0.21 (0.03 to 0.38) 0.03

Mean annual discharge 102 0.04 (−0.03 to 0.11) 0.10 (−0.08 to 0.27) <0.01

Hydrology Flashiness 124 −0.23 (−0.64 to 0.19) −0.10 (−0.27 to 0.08) <0.01

CV discharge 124 −0.20 (−0.86 to 0.45) −0.06 (−0.24 to 0.13) 0.01

Minimum 30-day 
consecutive flow 124 1.36 (0.39 to 2.33) 0.24 (0.07 to 0.42) 0.05

Channel substrate Average sediment size 
(unweighted) 88 −0.10 (−0.22 to 0.02) −0.17 (−0.38 to 0.04) 0.02

Average sediment size 
(weighted) 88 −0.12 (−0.24 to 0.00) −0.20 (−0.41 to 0.01) 0.03

Land cover Impervious surface in 
basin 124 3.24 (−0.19 to 6.67) 0.16 (−0.01 to 0.34) 0.02

% Medium density 
urbanization in 

catchment
128 3.39 (1.11 to 5.68) 0.25 (0.08 to 0.42) 0.06

% Crop cover in 
catchment 128 0.86 (−0.46 to 2.18) 0.11 (−0.06 to 0.29) 0.01
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MATERIALS AND METHODS
We used the following workflow: (i) perform a literature review of 
invertebrate ACSP studies; (ii) append environmental covariates to 
the ACSP data assembled in the literature review; (iii) use univariate 
regression to test significant relationships between key covariates 
and ACSP; and (iv) use SEM to identify causal pathways within net-
works of interacting covariates, thereby distinguishing direct from 
indirect drivers of ACSP (31). SEM analyses were conducted at two 
scales: streams throughout the United States and a global analysis of 
streams distributed across six continents (fig. S1). By first analyzing 
U.S. streams, we were able to use a large standardized set of envi-
ronmental covariates in critical testing of the metamodel (Fig. 1). 
The global-scale analysis was limited by a reduced number of co-
variates, but it allowed us to examine the generality of some key 
pathways in the U.S. model.

Literature review
Potential sources of ACSP data were first identified through an ISI 
Web of Science search (keywords “stream OR streams OR creek 
OR lotic AND benthic OR benthos OR invertebrate OR macroin-
vertebrate AND production”) that returned 468 sources (peer- 
reviewed publications, government reports, or indexed theses). 
Each of these publications was then checked for compliance with 
three a priori criteria: (i) Data were exclusive to within-channel 
ACSP and did not include estimates of floodplain production; (ii) 
samples were inclusive of all locally occurring taxa and did not 
focus on a discrete subset of taxa or functional feeding groups; and 
(iii) ACSP estimates were inferred from repeat samples collected 
throughout the year [e.g., size frequency or cohort methods (17)], 
rather than P:B relationships (80). However, ACSP estimates in-
ferred from P:B relationships were acceptable when used solely 
to “fill in” production estimates for rare or low biomass taxa that 
could not be partitioned into distinct size classes or cohorts. This 
screening process reduced the initial list of 468 publications to 
56, most of which included ACSP estimates for multiple sites; from 

the final 56 publications, we obtained 164 site-specific estimates 
of ACSP. Most study sites are located in the contiguous United 
States (n = 137; fig. S1A), with others in Europe (fig. S1B), Iceland, 
Costa Rica, Panama, Chile, and New Zealand (sites not shown in 
fig. S1). Complete citation information for all sites retained in 
this study are listed in data file S1. Before analyses, all ACSP 
estimates were standardized to units of milligrams AFDM per 
square meter per year (mg AFDM m−2 year−1), using conversion 
factors by Waters (81), and then natural log–transformed to im-
prove normality.

Environmental covariates
To test the hypothesized relationships shown in the metamodel 
(Fig. 1), we appended a suite of environmental covariates, as well as 
author-reported total invertebrate biomass and density estimates, 
to each of the 164 ACSP study sites. These covariates included loca-
tion information (longitude and latitude), water quality parameters 
(e.g., water temperature, pH, and conductivity), physical habitat 
characteristics (e.g., stream channel dimensions and substrate par-
ticle size), and climate conditions (air temperature and precipita-
tion). Whenever possible, covariate values were obtained from the 
original literature sources or from companion studies that were 
conducted at the same study sites. Complete descriptions of all co-
variates in the ACSP database are listed in table S1 and detailed 
methods used to obtain them are provided in the Supplementary 
Materials. Availability of covariate data was variable, with many more 
covariates accessible for U.S. sites than non-U.S. sites. Two versions 
of the ACSP database were therefore prepared: a U.S.-only database 
with a large selection of covariates for each of the 137 U.S. sites (see 
data file S2) and a global-scale database inclusive of all 164 study 
sites but with a limited number of covariates for each site (see data 
file S3). Many of the covariates in the U.S. database were not repre-
sented in the metamodel (Fig. 1); these were included in the com-
piled database to provide a ready data source for testing hypotheses 
not considered here.

Table 2. Direct and total effects of each driver on ACSP in the U.S. and global models. Total effects are calculated as the sum of the direct and indirect effects 
of the predictor on the response variable. 

SEM model Predictor Response Direct Total effect

U.S. model Water temperature ACSP 0.39 0.39

30-day consecutive flow ACSP 0.28 0.28

Precipitation ACSP 0.18

Air temperature ACSP 0.36

Impervious cover ACSP 0.02

Watershed area ACSP 0.16

Mean elevation ACSP −0.10

Absolute latitude ACSP −0.01

Forest cover ACSP −0.08

Global model Absolute latitude ACSP 0.35 0.19

Air temperature ACSP 0.38

Mean elevation ACSP −0.19

Precipitation ACSP 0.05

Water temperature ACSP 0.47 0.47
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Hydrologic modeling
Hydrologic indices were independently predicted for each U.S. site, 
using time series of daily discharge records from the U.S. Geological 
Survey (USGS) Water Services portal (https://waterservices.usgs.
gov), and appended to the ACSP dataset. We began by selecting a 
national sample of flow gauges from the USGS Geospatial Attributes 
of Gages for Evaluating Streamflow database [GAGES II; Falcone et al. 
(82)] that featured (nearly) continuous discharge records from 1970 
through the present day; this duration allowed robust characteriza-
tion of contemporary flow dynamics while maximizing the number 
and spatial distribution of gauges used to develop hydrologic models. 
We then removed gauges with upstream impoundments of >50 Ml 
(megaliters)  km−2 (impoundment volume scaled by watershed area), 
as these sites may be more strongly influenced by dam release oper-
ations than natural precipitation and land-use factors (83). This screening 
process resulted in a sample of 2568 gauges.

Random forest models were then developed for a set of hydro-
logic indices, incorporating four of five hydrologic components: 
flow magnitude, frequency, duration, and rate of change (84). We 
began with models of 12 hydrologic indices that are broadly repre-
sentative of perennial streams in a variety of conditions (85, 86). Flow 
magnitude was characterized by variability, skewness, two mea-
sures of spread, and median annual maximum flow. Flow frequency 
was characterized by low flow pulse percentage, frequency of low 
flow events, and two measures of high flood pulse percentage. Flow 
duration was characterized by the 30-day minimum and maximum 
daily discharge. Rate of change was characterized by hydrologic 
flashiness (87). Following Carlisle et al. (88), random forest models 
(500 iterations per model) were built for each flow index using the 
randomForest library in R (89). Each random forest model was 
parameterized with a suite of predictor variables representing pre-
cipitation, underlying geology, and land use, but excluding pre-
dictor variables that were subsequently used in SEMs of secondary 
production (forest cover, watershed size, and impervious surface 
in the upstream watershed). Random forest model fit differed 
among hydrologic indices, and we focused on those models that 
explained ≥45% of the variance in their respective indices. These 
included flashiness, high flow pulse percentage (i.e., number of 
daily values within a time series) exceeding the daily median by ×7 
(HighFlowPulse7) and ×3 margins (HighFlowPulse3), minimum 
consecutive 30-day flow, low flow pulse percentage, and variation 
in daily flow. The final six random forest models were then used to 
predict flow indices at each of the stream sites included in the U.S.ACSP 
database.

Data analyses
A subset of 13 covariates (see Table 1), each representative of a 
hypothesized ACSP driver as shown in Fig. 1, was first selected for 
univariate regression analyses of U.S. streams. Associations be-
tween these covariates and ACSP were then independently tested 
with regression models of the general form ACSP = b × C + Y, where 
C is the covariate of interest, b is a coefficient (i.e., regression model 
slope) relating C to ACSP, and Y is an intercept term. Natural log 
transformations were used to improve normality for covariates with 
skewed distributions. In cases where C was a categorical variable (e.g., 
stream order), b was calculated for each categorical level in com-
parison to a baseline level. For example, the stream order baseline 
was first-order (i.e., the smallest) streams. Thus, b for second-order 
streams was the difference between first- and second-order streams. 

Because measurement units differed among covariates, standardized 
regression model parameter estimates were calculated [ (90)] to 
facilitate direct comparisons among covariates. Coefficients of de-
termination (r2) were also calculated for each regression model to 
estimate the variation in ACSP explained by the respective covariate.

Next, SEM was used to confront the ACSP metamodel (Fig. 1) 
with the empirical ACSP and covariate data (table S1). This allowed 
us to (i) assess the complete graphical network of hypothesized in-
teractions and relationships, with the directions of links (i.e., paths) 
in the SEM diagram indicating causal influences, and (ii) test the 
overall fit of the network (31, 91). Separate models were fit to the 
U.S. and global databases, with the former used to test the complete 
network of interrelationships among covariates shown in Fig. 1 and 
the latter testing for generality of the U.S. results at the global scale. 
At each of the two scales, an iterative process of testing and linking 
covariates, consistent with the hypotheses outlined in the metamodel, 
was used to produce a final SEM of ACSP. Three indices of model 
fit were used with conventional significance thresholds—the 2 P value 
(2 P > 0.05), the standardized root mean squared residual (SRMR ≤ 
0.08), and the comparative fit index (CFI ≥ 0.95)—to assess the overall 
fit of each SEM (92). All SEM procedures were conducted with the 
lavaan library in R (93). Code to build the final U.S. and global models 
is provided in data file S4.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/4/eaav2348/DC1
Supplementary Materials and Methods
Fig. S1. Maps of study sites included in the ACSP database.
Table S1. Data dictionary for variables included in the secondary production database for U.S. 
streams.
Data file S1. Citation records for all studies included in the ACSP database.
Data file S2. Complete secondary production and covariate data for all U.S. streams.
Data file S3. Secondary production and covariate data for the global streams database.
Data file S4. R code to build the U.S and global SEM models.
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