
Hacking
Lemons Into Accessible

Lemonade

Squeezed
By Your
Content
Editing

Environment

Just seei
ng so

ur
?

Sweeten You
r Pe

rs
pe
ct

iv
e!

Kaitlyn Goodall, Montana State University Web & Digital Communications

You can too.

total accessibility issues (more daily!)

registered CMS editors (~800 active)

closed source CMS (and 1 OCR letter)

806 people, solving 1 error every 5
minutes, could theoretically be done
in 2 work days, and even...
never publish another error... !???!!

Most of our content editors are just that: content editors, with related word
processing skills and usually no html/etc knowledge.

Most of them do web content work as a small fraction of their wider job, whether
that might be as an administrative role, a faculty member, or anything else.

WCAG 2.1 is technically complex, requiring a basis in related technical fields and
jargon. Related training can easily run 8 hours for an experienced html developer or
designer (WebAIM, etc).

How many hours does it take to train someone without any related background to a
point where they have adequate HTML/CSS expertise?

At best, 8 hours x 800 people = 6,400 hours spent, across the University. How many
hours will be spent by staff running training? Will outside trainers be instead paid
to come in? How much will that cost? How many hours of related support will be
needed? How many new editors are trained each year (answer: roughly 200).

Trying to train them to expert levels is neither fair to them,
nor sustainable for the University

6
W&D developers,
support staff, and
departmental
administrators

vs

>500,000
>150,000

>1,600

1

C
rushed by numbers

“the team”

pieces of web content (more daily!)

At Montana State University, we looked seemingly impossible odds in the face and found in them the
basis for crafting our own engine of success, by focusing on charting a course to an outcome where
every person’s strengths could be leveraged to empower everyone else, rather than weighing each
other down.

Re
fra

m
e

your view

Turn 6 into 806

Empower
every person
to be your team

Ingredients For Success: Accessible & Universal Design concepts...

We’re all about education!

But training content editors into
HTML/CSS accessibility experts

is not realistic or sustainable

at 1 error per 5 minutes,
that would take six people

an entire year of doing
nothing else.

)(

re
member! we’re here to help PEOPLE: don’t change your framing just to lose sight of THEIR perspectives and lived experiences

Accept people as they are:
find solutions for their current abilities and needs;
don’t force them to fit your preconceptions of
someone who fixes accessibility errors.

1.	Reduce the ability to make errors
Constraint is a powerful but easily unpopular usability design tool.
Try to offer new and improved but more tightly constrained atomic
design options within your editing environment, to give something
positive while taking away other options.

2.	Don’t make perfect the enemy of good
Accept that you will need to make compromises, but try to do so with
your focus on who they will affect the most, what they entail, and how
that looks at a systematic level in terms of cost.

3.	Use your mandate in positive ways
If you need explicit policy, budget, or anything else, use your OCR letter and any
related agreement by stressing what you will do with those tools as why they are
necessary to the University’s mission.

4.	Explore outside options from the start
Don’t be afraid to spend money: remember, any tool that lets your content
editors remediate accessibility issues themselves is saving money overall.

5.	What if nothing gets you far enough?
How much time would it take to develop something? What is that cost? What
would ongoing year to year costs be? How does that compare with licensing
costs? Except now you’re left with one giant issue, even if this looks good...

What can you do when boxed in by a
closed source editing environment?

If your CMS renders your HTML to
show editors what they’re working
on...

Anything you can dream of!

... you
can do...

December 2017

Prelim exploration of scanning
code and server side scanner
begins January 2018

Alpha server side scanner

April 2018

Developing CMS accessibility task tool

August 2018

Beta a11y task tool release to
production with group access
controls limited to testers

June 2018

CMS a11y task tool alpha

March 2018

Prelim CMS accessibility UI sketching

(...practical limits notwithstanding, but that’s still so much!)

Su
cc

es
s i

s
a

jo
ur

ne
y,

 te
llin

g
a

st
or

y

September 27, 2017
Office of Civil Rights Complaint Letter

May 2, 2018
voluntary resolution agreement

May 30, 2019
OCR Deadline for training and
all new content to comply

January 9, 2019

141,797 errors

May 30, 2021
OCR Full compliance report due

October 2018

RC1 of CMS A11y task tool, video
for training recorded

November 2018

New Accessibility training released to
CMS content editors, related task tool
activation on training completion per
person

March 2019

Nearly 100% active editors trained
and now using the Accessibility
Task Tool

May 2019

Editing privileges for people
who have not taken training are
turned off.

July 10, 2019

61,517 errors

September 26, 2019

57,710 errors 80% of remaining errors
are “document” errors:

desktop documents which
have not yet been verified
for accessibility or removed/
replaced with web content

if inaccessible.

...and desktop documents
are much slower...

Keep thinking outside of the box, from within it.

The entire DOM is open to you, and then some. You can evaluate it, you can manipulate
it, you can build on it. Javascript can do far more than just some fancy blinky text. You can
even monkeypatch XMLHttpRequest to change XHRs (... but probably shouldn’t)!

Translate the technical into practical, familiar contexts for people: e.g. tasks, not errors.

If you have a documented API, great, but you can still do fine without one: your browser’s
network panel or other sniffing tools like Fiddler can expose everything you need.

Integrate with your preexisting support and documentation systems... both for the people
using your software and also for your own sake! Don’t leave yourself maintaining the same
data in multiple places: you could even AJAX in directly from your documentation.

Don’t overload yourself at the outset: get a minimum viable product off the ground first.

Your browser is your friend in more ways than just letting you inject tools for people: did
you know you can prototype html and CSS directly in your browser? This becomes crucial
when working over a closed third party system, where you need to be aware of adverse
interactions and also won’t have common build tools like a servlet with auto-refresh.

Where do you want to go next?
Once you’ve started, you have a platform of success
not just for your content editors, but also for wherever
you want to take it.

You can go from static to live scanning, even of live,
open editors.

How about some Machine Vision to decide whether
alt text adequately captures any prominent image
text, and to flag images with too much text?

You’re not alone, and neither are your content editors: with an easy remediation tool now
in your hands, consider hiring some student workers to speed through stale content and
maybe even to help with desktop document remediation efforts (the next frontier).

At times, opportunity rises out
of situations that at first glance
appear to only hold adversity.

https://www.montana.edu/web/projects/accessibility/

