Montana State University

MSU researchers develop temperature-tolerant enzymes for advancing genetic manipulation tools

September 6, 2012 -- MSU News Service

Subscribe to MSU Newsletters


Bobcat Bulletin is a weekly e-newsletter designed to bring the most recent and relevant news about Montana State University directly to friends and neighbors via email. Visit Bobcat Bulletin.

MSU Today e-mail brings you news and events on campus thrice weekly during the academic year. Visit the MSU Today calendar.

MSU News Service
Tel: (406) 994-4571
msunews@montana.edu
BOZEMAN - Researchers at Montana State University have found a method for creating more robust, temperature-tolerant enzymes that can be used as tools in the process of genetic manipulation.

A patent is pending on the method, which previously had been realized in principle but not proven in practice until now.

The research team was been able to identify the structural elements responsible for the enzyme's extreme thermal tolerance.

The enzymes, particularly the tyrosine recombinase and its subfamily integrase, assist in recombining genetic material and used widely in biotechnology applications including gene splicing, cloining and gene therapy. They are notoriously fragile and require cooling to remain viable. Once a sample has risen to room temperature, its usefulness is short lived.

Integrases allow viruses to alter the genetic structure of host cells. Site-specific integrases perform recombinations of DNA segments by recognizing and binding to short DNA sequences (sites), at which they cleave the DNA backbone, exchange strands between the two DNA helices, and rejoin the DNA strands.

Because increased thermal stability can provide more user-friendly laboratory enzymes from test-tube to animal applications, the findings have the potential for developing superior site-specific recombinases for academic and commercial biotech applications.

The findings can also be applied to other recombinases, including as Cre, Flp and Lamda, to increase stability of industrial tyrosine recombinase enzymes in general.

Interested companies and entrepreneurs can license the new technologies by contacting Nick Zelver with the MSU Technology Transfer Office at (406) 994-7868, or by email at nzelver@montana.edu.

To date, MSU has licensed 214 technologies developed by faculty, and 95 of those licenses are with Montana companies.

To access these and other MSU technologies, visit:http://tto.montana.edu/technologies.

Contact: Nick Zelver at (406) 994-7868, or nzelver@montana.edu.