Glaciation's topographic control on Holocene erosion at the eastern edge of the Alps


Jean L Dixon, Friedhelm von Blanckenburg, Kurt Stuewe, Marcus Christl


Earth Surface Dynamics


What is the influence of glacial processes in driving erosion and uplift across the European Alps? It has largely been argued that repeated erosion and glaciation sustain isostatic uplift and topography in a decaying orogen. But some parts of the Alps may still be actively uplifting via deep lithospheric processes. We add insight to this debate by isolating the role of post-glacial topographic forcing on erosion rates. To do this, we quantify the topographic signature of past glaciation on millennial-scale erosion rates in previously glaciated and unglaciated catchments at the easternmost edge of the Austrian Alps. Newly measured catchment-wide erosion rates, determined from cosmogenic Be-10 in river-borne quartz, correlate with basin relief and mean slope. GIS-derived slope-elevation and slope-area distributions across catchments provide clear topographic indicators of the degree of glacial preconditioning, which further correlates with erosion rates. Erosion rates in the easternmost, non-glaciated basins range from 40 to 150mmky(-1) and likely reflect underlying tectonic forcings in this region, which have previously been attributed to recent (post 5 Ma) uplift. By contrast, erosion rates in previously glaciated catchments range from 170 to 240mmky(-1) and reflect the erosional response to local topographic preconditioning by repeated glaciations. Together, these data suggest that Holocene erosion across the Eastern Alps is strongly shaped by the local topography relict from previous glaciations. Broader, landscape-wide forcings, such as the widely debated deep mantle-driven or isostatically driven uplift, result in lesser controls on both topography and erosion rates in this region. Comparing our data to previously published erosion rates across the Alps, we show that post-glacial erosion rates vary across more than 2 orders of magnitude. This high variation in post-glacial erosion may reflect combined effects of direct tectonic and modern climatic forcings but is strongly overprinted by past glacial climate and its topographic legacy.



How is this information collected?

This collection of Montana State authored publications is collected by the Library to highlight the achievements of Montana State researchers and more fully understand the research output of the University. They use a number of resources to pull together as complete a list as possible and understand that there may be publications that are missed. If you note the omission of a current publication or want to know more about the collection and display of this information email Leila Sterman.