Metabolic response of Agrobacterium tumefaciens 5A to arsenite


Monika Tokmina-Lukaszewska, Zunji Shi, Brian Tripet, Timothy R. McDermott, Valerie Copie, Brian Bothner, Gejiao Wang


Environmental Microbiology


Wide-spread abundance in soil and water, coupled with high toxicity have put arsenic at the top of the list of environmental contaminants. Early studies demonstrated that both concentration and the valence state of inorganic arsenic (arsenite, As(III) vs. arsenate As(V)) can be modulated by microbes. Using genetics, transcriptomic and proteomic techniques, microbe-arsenic detoxification, respiratory As(V) reduction and As(III) oxidation have since been examined. The effect of arsenic exposure on whole-cell intracellular microbial metabolism, however, has not been extensively studied. We combined LC-MS and 1H NMR to quantify metabolic changes in Agrobacterium tumefaciens (strain 5A) upon exposure to sub-lethal concentrations of As(III). Metabolomics analysis reveals global differences in metabolite concentrations between control and As(III) exposure groups, with significant perturbations to intermediates shuttling into and cycling within the TCA cycle. These data are most consistent with the disruption of two key TCA cycle enzymes, pyruvate dehydrogenase and ?-ketoglutarate dehydrogenase. Glycolysis also appeared altered following As(III) stress, with carbon accumulating as complex saccharides. These observations suggest that an important consequence of As(III) contamination in nature will be to alter microbial carbon metabolism at the microbial community level and thus has the potential to foundationally impact all biogeochemical cycles in the environment.



How is this information collected?

This collection of Montana State authored publications is collected by the Library to highlight the achievements of Montana State researchers and more fully understand the research output of the University. They use a number of resources to pull together as complete a list as possible and understand that there may be publications that are missed. If you note the omission of a current publication or want to know more about the collection and display of this information email Leila Sterman.